
Suggesting API Usage to Novice Programmers with the
Example Guru

Michelle Ichinco, Wint Hnin, and Caitlin Kelleher
Washington University in St. Louis

St. Louis, MO, USA
{michelle.ichinco, hnin, ckelleher}@wustl.edu

ABSTRACT
Programmers, especially novices, often have difficulty learn-
ing new APIs (Application Programming Interfaces). Existing
research has not fully addressed novice programmers’ un-
awareness of all available API methods. To help novices
discover new and appropriate uses for API methods, we de-
signed a system called the Example Guru. The Example Guru
suggests context-relevant API methods based on each program-
mer’s code. The suggestions provide contrasting examples
to demonstrate how to use the API methods. To evaluate
the effectiveness of the Example Guru, we ran a study com-
paring novice programmers’ use of the Example Guru and
documentation-inspired API information. We found that twice
as many participants accessed the Example Guru suggestions
compared to documentation and that participants used more
than twice as many new API methods after accessing sugges-
tions than documentation.
ACM Classification Keywords
H.5.2 [User Interfaces]: Evaluation/method
Author Keywords
APIs; novice programming; programming support; examples
INTRODUCTION
Research has shown that programmers often struggle to learn
and use Application Programming Interfaces (APIs) [47].
These issues learning APIs stem from a variety of causes,
including insufficient resources, confusing API structure, lack
of programming experience, and unawareness of API meth-
ods [46]. This paper will focus primarily on API method
unawareness. While unawareness of API methods affects all
programmers, those with less programming experience, such
as children learning programming or end-user programmers,
often find barriers to learning APIs insurmountable [28].

We are unaware of existing research in API support or com-
puter science education that has fully addressed the awareness
problem in learning APIs. Instead, researchers have created
systems for helping experienced programmers use APIs that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

CHI 2017, May 06-11, 2017, Denver, CO, USA

© 2017 ACM. ISBN 978-1-4503-4655-9/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3025453.3025827

improve: code completion [26], search [50], and available
documentation [49]. These support systems require users to
query a method of interest, so they do not help programmers
identify new applicable API methods or incorrect usages of
API methods.

To illustrate why using a large and unfamiliar API can be
especially challenging for non-expert programmers, imagine
an end-user programmer, Julie, who needs to analyze data from
a biology study quickly. She decides to use Ruby to write a
CSV file of results, but does not realize that an API method
exists to automatically format an array correctly with commas
[8]. Instead, she loops through her data, adding commas
where they seem appropriate. Existing commas within her
data make this task even more complex. Imagine instead that
while Julie writes her array output code, her IDE offers a tip
that introduces Julie to the method used for array formatting
along with examples that illustrate its use.

In this paper, we introduce a system called the Example Guru,
and evaluate its impact on API exploration and use. The Ex-
ample Guru is designed to suggest relevant API information
while programmers work on their own projects. The Example
Guru uses a set of static rules to automatically check novice
programs for opportunities to suggest API information. When
it finds opportunities to do so, the Example Guru offers quick
suggestions of relevant API methods. The user can expand the
suggestions to view two contrasting executable code examples
and support for finding and adding relevant code elements. To
evaluate the effectiveness of the Example Guru at encouraging
new API use by novice programmers, we ran a study compar-
ing the Example Guru’s suggestions to an in-application API
documentation condition designed to capture the current best
practice for supporting API use. Results show that twice as
many novice programmers using the Example Guru accessed
suggestions as accessed the in-application documentation in
the control condition. Novice programmers also used over
twice as many new API methods after accessing suggestions
than after accessing documentation. Overall, we found that
our suggestions helped broaden novice programmers’ use of a
new API. This paper has two contributions: 1) a system that
motivates use of new API methods through context-relevant
suggestions and contrasting examples, and 2) a study demon-
strating increased exploration and use of API methods over
best practice in-application documentation.

http://dx.doi.org/10.1145/3025453.3025827

RELATED WORK
This section focuses on how related systems recommend sup-
port to programmers and users of complex software. Complex
software systems are related because large numbers of avail-
able commands create problems similar to those that program-
mers face when learning new APIs. In the System Design
section, we will discuss how the design of the interface and
examples compare to similar systems. Here, we will place the
Example Guru within the context of work on recommending
support based on: 1) the behaviors of communities of users, 2)
the ways individuals program and use complex software, and
3) the errors users encounter.

Recommending support based on communities of users
Existing systems support novices in learning APIs, program-
ming, and complex software by leveraging: 1) overall commu-
nity usage, and 2) community example repositories.

Overall command usage
Some API and software support uses community data to rec-
ommend commonly used commands. Systems provide recom-
mendations with ranked lists based on common usages in a
variety of ways, such as: lists of API methods in a program-
ming environment [19], lists of commands within software
[35], or by emphasizing more commonly used API methods in
documentation [49]. Some recommendation tools use collab-
orative filtering algorithms, which classify a user’s behavior
within community usage data in order to recommend API
methods [37, 44] or software commands [35, 30].

Recommending from sets of community examples
Research has also leveraged communities of users to find
examples, Q&A information, and code completion methods
related to a user’s program. Systems work to improve exam-
ple code retrieval for supporting programmers in using APIs.
They do this by comparing users’ code against repositories
[20], mining patterns of APIs often used together [54], look-
ing for related words to find code examples for similar types
of functionality [2], or using input and output types [50, 33].
For more project-specific examples in open-source projects,
recommendations have been based on the program history and
types of tasks [10, 32]. Other than examples, systems also use
community resources to inform relevant Q&A recommenda-
tion [9], code completion [5, 26], and parameter completion
[1, 53].

The Example Guru also uses information about how a com-
munity of users commonly uses API methods, but it uses that
information along with the context of the code. Because the
Example Guru aims to improve the API unawareness issue, it
suggests examples, rather than improving the ease of searching
for examples. Furthermore, when the Example Guru suggests
examples, the suggestions present new API methods that the
programmer may want to learn, rather than examples about
what the user is already doing.

Recommending support based on individual usage
Some systems provide recommendations for effective pro-
gramming, APIs, or software commands based on either the
user’s behavior or the artifact they are working on.

Behavior
Research has used current or past behavior to recommend
support to users of complex software and APIs. AmbientHelp
recommends information based on the commands a user is
working with at any point in time [34]. Similarly, CoDis sug-
gests unfamiliar commands based on command patterns and
the time since the user’s last activity [55]. Another tool bases
API recommendations on the user’s programming history [45].
Artifacts
Some systems use just the artifact the user is creating to recom-
mend help for APIs, programming, and commands in complex
software. Tools for recommending APIs consider the structure
of code to recommend API methods, such as by looking for
redundant code [25] or using identifiers from a class’s abstract
syntax tree [18]. Documentation recommendations can also
rely on artifacts, like by connecting method invocations to
documentation [11], or by relating software interface elements
to documentation [27]. Systems also recommend commands
to users in sketching software based on the drawing artifacts
that users create [14, 22, 40].

These systems are the most similar to the Example Guru be-
cause the Example Guru also makes suggestions based on the
programmer’s code. However, these systems primarily focus
on recommending commands, while the Example Guru also
focuses on the user’s motivation to access the suggestions. To
do this, the Example Guru suggests unknown or incorrectly
used API usages in order to both introduce new API meth-
ods, as well as to improve the output of the programmer’s
code. Results-oriented programmers like novice and end-user
programmers will likely be more motivated by suggestions
that explicitly connect new API methods to the output of their
code.
Recommending support based on errors
Software systems and programming environments also sug-
gest information to users based on errors. Tools for non-expert
programmers recommend information to try to help users who
have hit a barrier in completing a code task [23] or who have
errors in their code [17]. Two specific scenarios where recom-
mendations based on errors can be especially useful are: in
pasting and adapting code examples [12], and in complex soft-
ware systems where commands are easily mistaken for each
other [29]. While these systems effectively suggest examples
to help resolve errors, they do not necessarily introduce new
skills and require that the user has hit a problem in order to
know what to suggest. Instead, the Example Guru suggests
context-relevant API methods based on programmers’ code in
order to help them use new API methods or use API methods
correctly.
THE EXAMPLE GURU
This section will first give an overview of how the Example
Guru works, followed by the rationales for the interface design
and the content the Example Guru suggests.
System Overview
The Example Guru suggests API usages to novice program-
mers based on their code in Looking Glass [31], a blocks-
based programming environment for creating 3D animations
designed for children aged 10-15 (see Figure 1). Looking
Glass users are similar to end-user programmers in that they

are motivated by the output of their code, which in this case is
an animation. The Looking Glass API is unique from many
other common blocks-based APIs because it has methods such
as ‘walk,’ ‘resize,’ and ‘setTransparency’ that perform oper-
ations on 3D graphics. We chose to implement the Example
Guru within Looking Glass for three reasons: we wanted to
address novice API use, Looking Glass users generally work
on open-ended projects which was our target context, and we
needed an unfamiliar API to introduce, so we could not use
the more widely known blocks programming environments.

The Example Guru has two main features: 1) rules, which
parse code, looking for opportunities to suggest API methods,
and 2) suggestions, which include textual tips, contrasting
code examples, and the ‘show me’ capability that demonstrates
where to find an API method block in the interface. In essence,
each rule asks a yes or no question about the presence of
specific code elements in a program and triggers suggestions
if the required code elements exist. For example, one rule
checks for a character turning to face another character. The
suggestion for that rule introduces joint movements, which
allow a character to turn just their head to face something,
rather than their whole body. The Example Guru uses rules to
check programs each time a programmer executes their code.
It then makes a suggestion to the user based on a triggered
rule. The system will only make a suggestion for one rule at a
time, so it uses an established priority if multiple suggestions
arise at once. We provide more details about the suggestion
priority in the system design section.
System design
In order to design the Example Guru we used two methods: 1)
formative studies, and 2) program analysis. For the Example
Guru interface and suggestions, we used an iterative design
process in a formative study with 48 participants aged 10-
15. To design the rules and suggestions, we used two sets
of programs not created for this study. One set contained
107 programs created by Looking Glass API experts. The
second set contained 600 programs shared to the Looking
Glass website by non-experts [31].
Rules
For this study, we designed and implemented the rules by hand.
In the discussion, we address how a system could automate
this process in order for it to apply to other and larger APIs.
Our process had three main steps: 1) compare novice and
expert API use to select the API methods to suggest and the
priority order, 2) consider the types of animations experts
created with specific API methods and find simpler or related
animations novices make where new API methods could be
useful, and 3) author the rules within the system.

In order to select which API methods to suggest and the pri-
ority with which to suggest them, we compared our sets of
novice and expert programs. We wanted to suggest API meth-
ods that novices were likely to be unfamiliar with, but also
that they were likely to find useful. The set of API methods
the Example Guru suggests contains API methods that experts
used more often than novices and that experts used more than
5% of the time. These API methods are likely unfamiliar, but
also used frequently enough by experts to be useful. Selecting
the API methods to suggest based on expert usage helps to

prevent the suggestions from over-fitting to the first hour of
programming. Since the Example Guru only presents one sug-
gestion at a time, we designed a priority ordering for selecting
one of the triggered rules to suggest. Rules suggesting ways
to correct API usages have the highest priority. The Example
Guru then suggests API methods with the largest difference in
expert and novice use and that experts used more often. The
lowest priority suggestions are for API methods that experts
and novices used with similar frequencies or that experts rarely
used.

The design of rules is similar to code smells [13] and anti-
patterns [23], but instead of focusing on checking for poorly
composed code, most of the rules in the Example Guru look
for opportunities to introduce new concepts. Essentially, rules
recommend ways to improve animations through the use of
previously unused API methods. Our formative work showed
that it is important for the rules to find opportunities to improve
novices’ animations because suggestions that only improved
the code quality were less exciting to novices creating anima-
tions. This is because novices in Looking Glass are focusing
primarily on their animations, rather than on trying to learn
new programming concepts. In order to decide when to recom-
mend a particular unused API method, we manually checked
how experts used API methods for complex animations. In
many cases, novices create similar, more basic animations with
more commonly used API methods. For instance, one rule
checks programs for characters turning multiple rotations, as
the programmer may be attempting to make characters dance.
The rule has a suggestion that demonstrates how to animate
joints to make a more realistic dancing animation. Each rule
has an associated suggestion that introduces the API usage to
the programmer.

Finally, we implemented the rules within the Example Guru.
Rules contain a specification of how to parse code for opportu-
nities to improve. Specifications use an internal API designed
to simplify querying the abstract syntax tree.
Suggestions
We designed the suggestion presentation and examples through
an iterative process with one-on-one study sessions.

We designed the suggestion presentation with the following
goals: 1) to not interrupt or overwhelm the user, 2) to be
easily accessible, and 3) to demonstrate the relevance of the
suggestion to the code. Formative user testing indicated that
programmers were most open to new ideas and improvements
around the time they decide to test their code, so the Example
Guru presents new suggestions after code execution. A list
of suggestions allows the user to return to a suggestion at any
point (see Figure 1-A), while the code annotations connect
suggestions to the relevant code (see Figure 1-B). Hovering
over a suggestion in the suggestion list provides a preview
of the example and hovering over an annotation in the code
shows a text description of the suggestion. These previews
provide a hint of what the suggestion would show if opened,
similar to surprise, explain, reward [51].

The examples presented within suggestions differ from those
in other systems [17, 23, 41] in two critical ways: 1) they
emphasize how the API method works using two contrasting

Figure 1. The Example Guru implemented within Looking Glass. (A)
List of all suggestions. (B) Code annotation button to open the most
recently added suggestion. (C) Contrasting examples such as ‘walk fast’
and ‘walk slow’. (D) ‘Show me’ button that users can click to see the
location of the suggested block.

examples (see Figure 1-C), and 2) they provide support for
finding the relevant code block in the interface (see Figure
1-D). We developed the idea for contrasting examples through
formative testing, where participants often did not know which
argument values to use in blocks of code. The two contrasting
examples either show different values or two API methods that
work similarly in order to highlight the differences. The goal
of the contrasting examples was to encourage novices to per-
form self-explanation, which has been shown to be effective
for learning [7]. Within a blocks environment, understanding
how a block works does not necessarily mean a novice can use
it. Formative and related work indicated that novices some-
times have trouble finding a code block from an example [21].
One study [16] found that providing a ‘show me’ button that,
when clicked, highlighted the location of the block in the pro-
gramming environment, helped programmers find necessary
blocks (see Figure 1-D). In the results, we answer whether
participants used the features provided in our design. Table 1
details designs we tested and found to be ineffective.
EVALUATION
We ran a study to evaluate the effectiveness of the Example
Guru’s suggestions in encouraging new API method use by
comparing them to an in-application documentation control
condition. We will call the two conditions the ‘suggestions’
condition and the ‘documentation’ condition. In working
towards reducing the unawareness problem for novice pro-
grammers learning new APIs, we tested the following two
hypotheses:

H1: Novice programmers will access suggestions more fre-
quently than documentation. We hypothesize that the sugges-
tions will expose novice programmers to API methods that
they likely would not have realized existed.

H2: Novice programmers using suggestions will improve
their API usage more as a result of suggestions than novice
programmers will from API documentation. Here, we want to
compare the number and type of API methods participants add
to their code after accessing suggestions or documentation.

Design Issue

Suggestions appeared
alongside the execu-
tion view.

Users did not focus on suggestions
while executing their code, but instead
returned to the code before considering
what to do next.

Suggestions only
appeared as buttons
next to the code.

Users did not always want to access
suggestions immediately, but display-
ing many suggestions crowded the edi-
tor.

Suggestions only con-
tained one example.

Users did not understand the impact of
argument values relative to their code.

Examples had text
along with the code
to explain how the ex-
ample worked.

The text made the example view
crowded and made it hard for users to
focus on the critical elements. Users
rarely read the text.

Table 1. Unsuccessful design attempts in formative testing

Documentation Condition
Currently, the best practice for supporting use of unfamiliar
API methods is providing easy-to-access documentation con-
taining example code. A few systems use suggestions within
a programming context, but focus on violations of proper
programming. Errors provide natural motivation to use sug-
gestions, but in the case of API use, we cannot assume that
novices will be motivated to apply a nonessential suggestion.
We believe comparing to the best practice, documentation, is
an appropriate first step toward evaluating the Example Guru.

We designed the documentation based on two common forms
of API support: online API documentation and code comple-
tion. We wanted the documentation to have full information
like online documentation, while making it easily accessible
like code completion. Thus, the user can access a doc (docu-
mentation for a specific API method) by clicking a ‘?’ button
beside the code block the user is interested in (see Figure 2-
A). Upon opening a doc, the user can view descriptions and
examples of how the API method works, along with all of the
available parameters for that API method (see Figure 2).
Participants
We recruited participants who had never used Looking Glass
because this study investigates novice programmers explo-
ration and use of the Looking Glass API. We recruited 81
participants aged 10 to 15 from a local STEM mailing list.
Two participants had used Looking Glass in the past and a
third skipped the first phase of the study, so we analyzed the
data from the remaining 78 participants. The 78 participants
had an average age of 11.8 (SD= 1.6), were 46.2% female,
52.6% male, and 1.2% unspecified gender. We compensated
each participant with a $10 gift card to Amazon.com.
Methods
We created materials in order to measure API information
access, API usage, and participant features that could influence
how participants use API information.
API information access and usage
In order to evaluate whether participants accessed suggestions
more than documentation, we needed to ensure two things:

Figure 2. In-application API Documentation condition. (A) Users can
access documentation using the ‘?’ button available beside APIs. (B)
Examples with different values and the description. (C) The play button
can be used to execute the code. (D) Button to expand or collapse the
parameters information. (E) Users can navigate to other doc using these
buttons.

1) that participants were equally familiar with the API in-
formation formats, and 2) that participants actually received
suggestions while working on open-ended programs. In or-
der to familiarize participants with the API information, we
created two training tasks. For the first training task, partici-
pants had to make a bunny walk faster by adding an optional
argument value to a ‘walk’ action. For the second, they had
to make a shark swim around an island by adding an optional
argument value to a ‘turn’ code block. We provided instruc-
tions on a sheet of paper that directed participants to use the
API information provided.

In order to improve the odds that participants would receive
suggestions during open-ended programming, we created and
tested scenes with props and characters for participants to use
in creating their animations. For instance, complex move-
ments and rotations trigger suggestions, so one scene was
designed for a Seaworld show animation. This scene often
motivated novice programmers to try to create complex anima-
tions with dolphins, which sometimes triggered suggestions.
We selected five scenes for this study based on popular scenes
from formative work because children were most excited to
create animations with those scenes.
Participant features
In designing the Example Guru, we wanted novice program-
mers to benefit from suggestions regardless of their age, gen-
der, or programming experience. Because the suggestions are
context-relevant, we hypothesized that the suggestions would
interest users with very little programming experience, as well
as novices with more exposure. In order to capture informa-
tion about programming experience, participants filled out a
demographic and computing history survey.

We also thought that the way participants like to learn might
affect how they use API documentation and explore new API
methods. In order to capture this, participants also filled out
an exploring and learning technology survey on paper before
the study, modeled after the survey about trying new tech-
nology in [6]. Additionally, to better understand participants’
motivations in using new API methods, we created dynamic
surveys for participants to fill out on-screen after completing

open-ended programs during the study. The surveys asked
questions about why participants used new API methods for
the first time and why they used or did not use API information
during the just-completed program.
Study Procedures
There were three phases of this study: 1) baseline open-ended,
2) training, and 3) supported open-ended. The study was
between subjects with two conditions: suggestions and docu-
mentation. Because work has demonstrated that gender plays
into exploration and learning in software [6], we randomly as-
signed participants to either use suggestions or documentation
keeping gender balanced. Participants worked individually on
all tasks and were allowed to move onto the next task if they
felt they had completed the current one.

Baseline open-ended phase
We wanted to know how participants would use the API with-
out any support, so participants first created an animation
without API support for up to 15 minutes. Because some par-
ticipants had no programming experience, the instructions for
the first phase gave information about how to drag blocks into
animations and execute the animations. This phase involved
open-ended programming, which means that there was no
correct or incorrect answer and that participants were allowed
to freely create their animations. We assigned participants a
specific scene for this task and balanced the assignments of
scenes across participants to limit any effect of specific scenes
on API usage. In order to find out more about why participants
added new API methods, participants completed an on-screen
survey at the end of this task that asked about: 1) one new API
method participants added and executed, and 2) one that they
added, executed and deleted, if these existed. Due to space
constraints, we will not discuss this survey in this paper.

Training phase
Due to time constraints for a controlled study, we wanted
participants to become quickly comfortable with using ei-
ther suggestions or documentation. To do this, we had all
participants complete two training tasks. In both cases, the
instructions showed how to access the suggestion or documen-
tation that would help them complete the task. The researchers
checked the participants’ code to make sure they successfully
completed the task and helped participants if needed. If partici-
pants completed a task without a suggestion or documentation,
the researcher demonstrated how they could have used it to
ensure that all participants were exposed to suggestions or
documentation.
Supported open-ended phase
Finally, we wanted to evaluate how participants used the API
information and API methods when working on their own
projects. During the supported open-ended phase, participants
created open-ended animations with either suggestions or doc-
umentation available to them. We first asked participants to
create a program based on the idea of a Seaworld show. The
purpose of providing an idea was to give participants a goal to
work towards, but not to constrain what code they should use.
Next, participants were assigned a scene in which they could
create any animation or use a provided story prompt if they
did not have an idea. Participants had up to fifteen minutes to
work on each of the two animations. If participants finished

early, they could select a scene they had not yet used and cre-
ate another animation. At the end of each of these animations,
participants also typed answers to questions onscreen about
why they added or removed certain API methods and why they
accessed or did not access API information.
Data Collection & Analysis
We logged all actions participants took and survey answers to
analyze suggestion, documentation, and API usage.

Time on task
We did not require participants to spend the full amount of
time provided on each task, so some participants spent less
than the standard amount of time. Most participants (76%)
spent the full amount of time on the baseline (15 min.) and
supported open-ended (30 min.) phases. We stopped analyzing
participants’ data after 30 minutes in supported open-ended.
We will report the results for the set of participants who spent
the full amount of time (59 participants), as well as the results
for all participants.

Accessing API information and API usage
We analyzed logs in order to measure which suggestions
and documentation participants accessed, meaning that they
clicked to open the API information. To determine whether
participants used new methods from the API information in
their programs, we measured which API methods participants
inserted into their programs for the first time after accessing
related API information. When comparing the number of ac-
cesses and API usage, we used t-tests to compare the aggregate
numbers because participants received different numbers of
suggestions. Additionally, participants in the API documen-
tation condition could access docs many more times than the
number of suggestions available. We use Cohen’s d to measure
effect size (small: .3, medium: .5, large: .8). We also report
the percentages of participants who accessed API information
and used API methods and compare this using Chi-squared
tests. We use the odds ratio to measure effect size (small: 1.5,
medium: 3.5, large: 9).

For both API information access and API usage, we describe
the kinds of API methods participants were accessing infor-
mation for and inserting into their programs. We believe the
best way to do this is to group the API methods based on how
much novice programmers generally use them. We base the
frequency of novice use on the set of 600 non-expert programs
described earlier. We will discuss the API methods in terms
of 4 groups: those that the Example Guru did not suggest,
APIs suggested that were used least frequently by novices (the
bottom third of usage frequency), those suggested that were
sometimes used (the middle third), and those suggested that
were most often used by novices (the top third of API method
usage frequency).

Participant qualities
We analyzed participant qualities to try to understand the types
of novice programmers who will benefit from suggestions
or documentation. We collected gender, age, programming
experience, and learning style data from the surveys. We cap-
tured programming experience using two survey questions:
‘Have you programmed before?’ and ‘Have you programmed
for more than 3 hours in your whole life?’ Those who had

less than 3 hours of programming experience likely only pro-
grammed once or twice without much instruction or practice.
Nine participants in the suggestion condition (23%) and eight
participants in the documentation condition (21%) had 0-3
hours of programming experience. We also intended to capture
personal preferences about using API documentation using the
on-screen end-of-task surveys for both conditions. Due to a
technical error, the survey questions asking participants about
why they did or did not access documentation did not appear
for the study participants, so we report quotes from pilot users
who completed the same study and received these questions.

RESULTS
We hypothesized that participants who received suggestions
would: 1) access suggestions, and 2) use API methods from
the suggestions more frequently than participants would access
and use in-application documentation. In this section, we first
explore these two hypotheses and then delve into how different
participants used the API information and the features they
used.
Access and use of suggestions and documentation
Ideally, suggestions should encourage API exploration when
novice programmers are pursuing their own projects. We eval-
uated this through the number of times participants accessed
API information and how many new API methods they used
after accessing API information.

Accessing suggestions and documentation
We found that more participants accessed suggestions than
accessed documentation: 82% of suggestion participants and
41% of documentation participants accessed at least one entry.
The difference in the number of participants who accessed sug-
gestions verses documentation was significant with a medium
effect size (χ2(1) = 12.19, p < 0.001, odds ratio = 6.4). Par-
ticipants in both conditions described using suggestions and
documentation to gain additional information about API meth-
ods that seemed potentially relevant. A participant in the
documentation condition described opening an API method
that changed a character’s appearance because: “... I wondered
what it was. It turned out to change Alice.” One participant in
the suggestion condition sought additional information about a
new method based on the tip offered as part of the suggestion:
“I opened the tip for ‘setTransparency’ because I thought it
was good way to make an object disappear”.

We found that participants accessed more total suggestions, on
average, than documentation. For all 78 participants, par-
ticipants accessed significantly more suggestions (M=3.3,
SD=2.7) than documentation (M=1.4, SD=2.7), t(76) =
31, p < 0.01, d = 0.69. Since some participants spent less
than the full task time, we also confirmed that this differ-
ence existed for the set of participants who used the whole
task time. The results were very similar: participants ac-
cessed suggestions (M=3.0, SD= 2.7) significantly more than
documentation (M= 1.1, SD = 1.7) with a large effect size
(t(50) = 3.3, p < 0.01,d = 0.85). Simply accessing more sug-
gestions is a potential benefit to novice programmers because
the suggestions expose them to broader range of API methods
that may be useful either immediately or in the future. In this
study, we could not measure whether a participant used a sug-
gestion based on reading the tip without opening it, but survey

responses indicate that some participants did this: Participant
S33 did not need to access a suggestion because reading it
was enough: “I did not open the tip for Turn to Face because I
read the outline for the Tip and used it in my code.” Similarly,
participant S70 said: “I did not open the tip because I saw it
from the outside and felt like I could figure it out and I think I
did.”

Our goal was to encourage novice programmers to use API
methods they would not necessarily use on their own. To
evaluate this, we analyzed the information access and API
use based on how often novice programmers in our sample
set of programs used API methods. We split the API use
based on one group of API methods that the Example Guru
did not suggest and three groups that the Example Guru did
suggest: the top third of methods that novices generally use
most frequently, the middle third, the bottom third. The set
that was not suggested includes API methods that novices
use more than experts or that experts use in less than 5% of
programs. In all three groups of API methods, the API infor-
mation was accessed and used more frequently by participants
in the suggestion condition (see Figure 3). While the largest
use of suggestions was for API methods novices generally
use the most, increasing use is beneficial because the aver-
age percentage of novices using those API methods is less
than 50%. Furthermore, only participants with suggestions
accessed information for the least used API methods.

The survey results provide additional insight into the reasons
participants chose to access or not access API content. Due to
a technical failure, participants in the documentation condition
did not receive questions about their documentation access
or use. Since questions about usage might encourage some
users to increase their API usage, we looked for an increase in
suggestion access and usage following the survey, which was
administered after the first supported open-ended animation.
However, we see little evidence of this. Ten participants used
suggestions only during the first open-ended animation, an
additional seventeen accessed suggestions throughout, and
only five participants accessed zero suggestions during the first
open-ended task, but one or more in the following animations.
Thus, we do not believe that the survey questions influenced
suggestion use.

Overall, participants described accessing suggestions to gain
additional information about API methods that seemed poten-
tially relevant. For example, one participant received a sugges-
tion about setting the color of the sky, which they thought they
could use: “The dark sky was sooo boring, so I looked at the
tip and used it.” Overall, participants opened 33% of the sug-
gestions offered. For some participants, decisions not to open
suggestions indicated lack of interest in those suggestions. In
other cases, participants wanted to open all of the suggestions,
but had not yet done so, like one participant: “I didn’t open
all of the tips yet.” Finally, some participants were focused
on other suggestions and missed ones that would have been
of interest. One participant described missing a suggestion
“because I was looking at other tips and didn’t realize there
was a tip [to] make only alien’s head turn.”

Figure 3. API information accessed and used grouped by frequency of
API use by novice programmers.

Participants in the documentation condition similarly de-
scribed a desire for additional information as a motivation
for opening documentation: “I wanted to know what it was
and I used it because I thought it would be pretty cool to begin
and end abruptly.” We unfortunately cannot report on their
decisions around documentation they did not access.

Using suggestions and documentation
Since increased access to API information may help to support
the use of a new API method, we also wanted to explore the
use of new API methods after information access. We found
that more participants used new API methods after access-
ing suggestions than after accessing documentation. About
three times as many participants in the suggestions condi-
tion used an API method after accessing the API information
as in the documentation condition, 38% vs. 12.8% (χ2(1) =
5.4466, p< 0.05, odds ratio = 4.17). Additionally, participants
added more new API methods after accessing the suggestions
(M= .59, SD=.82) than after accessing the documentation (M=
0.15, SD = 0.43). This was significant for all 78 participants
(t(57.6) = 2.94p < 0.01,d = 0.67) and for the 59 participants
who used the full task time (t(49.3) = 2.2, p < 0.05,d = 0.55).

In addition to frequency of use, it is interesting to explore the
diversity of methods participants choose to use. In particular,
we designed our rules and suggestions with the goal of intro-
ducing API methods that experts use more frequently than
novices. Participants in both conditions used more new API
methods from the group of API methods that are most com-
monly used by novices than the other groups. However, we
note that participants using suggestions used more new meth-
ods from the middle and low use categories combined (see
Figure 3). Finally, we looked at API methods for which we
did not create suggestions. While some participants in the doc-
umentation group accessed information about these methods,
very few were actually added. This provides some support for
our method of selecting API methods for suggestions.

Our survey results suggest that participants in the suggestions
condition decided to use an API method based on its potential
to improve their animation. One participant explained “I just
thought that changing the posture of the dolphins created a
more natural feel than just moving its entire body.” In contrast,
participants in the documentation condition more often cited
goals of understanding. For example, one participant using
documentation stated, “I opened it and chose to use it so I
could see what it looked like.” We see a similar dichotomy
around participants’ explanations for non-use. A participant
in the suggestions condition chose not to use an accessed
suggestion because it did not mesh with her vision for her
story: “I wanted to have the dolphin to go different distances
showing they each do a little more than the last dolphin.” A
participant in the documentation condition explained accessing
but not using documentation for a duration parameter because
“...I wanted to see how it worked.”

Do participants’ demographics affect how they used sug-
gestions and documentation?
In the design of the Example Guru, we hoped to support partic-
ipants regardless of age, programming experience, and gender.
By having suggestions relate to the context of the program
and API methods that the programmer had not yet used, we
hypothesized that the suggestions should continue to be rel-
evant to programmers as they become familiar with more of
the API. Previous studies have found a correlation between
age and programming success with the same age range of
children [15]. These differences in performance could result
from the developmental changes that impact children’s abili-
ties to understand abstraction around the ages of 11-12 [42].
We hoped that the context-relevant approach would support
novice programmers of differing ages. We also hypothesized
that suggestions might better support participants who liked
to learn by accessing information, rather than by tinkering,
since suggestions do not require the user to seek out new API
methods and documentation. Since females have been shown
to be less likely to learn through exploration in some cases
[3], it seemed as though the suggestions might provide better
support for female novice programmers.

Age and Programming Experience
Our results did not show a relationship between age and access-
ing and using either suggestions or documentation. Specifi-
cally, we found no significant correlation between age and
suggestion access(t(37) = −0.5, p = 0.62,r = −0.08) nor
between age and documentation access (t(37) = 0.37, p =
0.71,r = 0.06). Similarly, we found no significant correla-
tion between age and the number of API methods used after
accessing suggestions (t(37) =−0.92, p = 0.36,r =−0.15),
nor between age and the number of API methods used after ac-
cessing documentation (t(37) =−0.22, p = 0.83,r =−0.04).
These results suggest that both documentation and sugges-
tions are used similarly by children ranging in age from ten to
fifteen.

Programming experience played a larger role in how much
participants accessed and used API information. Those with
less than three hours of programming experience were the most
likely to access both suggestions (100%) and documentation
(75%). Participants with little programming in both conditions

added new API methods after accessing them at similar rates:
44% of those in the suggestions condition and 38% of those in
the documentation condition added API methods. However,
among those with more than three hours of programming
experience, we see a trend towards more use of suggestions.
Of the participants in the suggestions condition, 77% accessed
a suggestion and 40% added a new API method after accessing
its suggestion. For participants in the documentation condition,
only 32% accessed API information and 6.5% used a new
API method after accessing its documentation. This trend
suggests significant promise in the use of context-relevant API
suggestions to help programmers continue to explore new API
methods.
Gender and Learning Style
When considering how gender might relate to participants’ use
of API information, we explored use by reported gender, as
well as learning style based on a survey.

We found that both males and females accessed and used the
suggestions at higher rates than the documentation. However,
male participants accessed suggestions more often than female
participants: males accessed an average of 4.3 suggestions as
compared to 2.2 suggestions for females (t(33.5) =−2.7, p <
0.05,d = .83). Male participants also accessed a larger per-
centage of the suggestions they received, so the larger number
of suggestions accessed by males was not due to a larger num-
ber of suggestions received (t(34.3) = −2.7, p < 0.05,d =
0.84). While not significant, we note that female participants
accessed documentation more often than male participants,
averaging 1.9 documentation accesses as compared to 1.05 for
males, as shown in Table 2. Overall, male participants opened
more suggestions, but both genders accessed suggestions. The
significant difference in terms of the number of suggestions ac-
cessed represents an important avenue for additional research.
While suggestions performed better than documentation for
both male and female participants, the lower usage by female
participants has the potential to create an educational inequity.

One of the main personality traits that often correlates with
gender differences in programming is the programmer’s learn-
ing style: whether they like to learn by tinkering and exploring
or using a step-by-step approach, so we also wanted to com-
pare the way participants desired to learn and their behaviors.
We created a survey based on the survey in [6] in order to try
to determine whether participants were more likely to explore
and tinker as a way of exploring the API or whether they were
more reliant on information like tutorials or books. Unfortu-
nately, the survey only had a reliability of α = 0.65 for the
questions about learning through exploring, and α = 0.5 for
the questions about learning using process-oriented informa-
tion, both of which are less than the accepted reliability for
surveys (0.7), so we will not report results for the survey.
Do participants take advantage of API information fea-
tures?
This section presents results on how participants used features
in the suggestions and documentation. Due to the structure of
this study, we cannot evaluate the impact of specific features,
so instead we explore three questions about feature use to
provide insight into the value of the system design: 1) how did
participants access information, 2) how much did they execute

Condition Action <3 hours prog. 3+ hours prog. p Male Female p

Suggestions
Accessed 100% 77% 86% 78%

M=3.8 SD=2.3 M=3.2 SD=2.9 M=4.3 SD=3.0 M=2.2 SD=1.8 <.05

Added API call 44% 40% 48% 33 %
M=.56 SD=.72 M=.6 SD=.86 M=.67 SD=.86 M=.5 SD=.79

Documentation
Accessed 75% 32% .07 30% 56%

M=3.4 SD=4.0 M=.94 SD =2.0 M=1.05 SD=2.8 M=1.9 SD=2.7

Added API call 38% 6.5% .08 10% 17%
M=.5 SD=.76 M=.06 SD=.25 M=0.1 SD=.31 M=0.22 SD=.5

Table 2. Participant characteristics and information access and API usage.

examples, and 3) how much do they use contrasting examples
and the ‘show me’ button?

We expected participants to access the suggestions and doc-
umentation using all of the mechanisms provided, which we
found to be true, as shown in Table 3. For the most part, par-
ticipants accessed suggestions from the suggestion list (see
Figure 1-A) and ‘?’ buttons (see Figure 2-A), which were
both in or near the palette where users drag code blocks from.
The list of suggestions was designed to help participants re-
turn to suggestions, which participants did: “I opened the tip
[suggestion] because I had forgotten how to do it.”

We found that the majority of participants who accessed API
information also executed examples in both conditions, but did
so more with suggestions: 81.3% of participants who accessed
suggestions executed an example at least once, while 68.8 % of
participants who accessed documentation executed at least one
example. Executing examples may suggest that participants
wanted to engage more deeply with the information in order
to find out more about it. Participants who executed examples
from suggestions executed on average 4.7 examples (SD =
3.5), while participants executed examples an average of 9.7
times from documentation (SD= 9). This may be because
suggestions only provided two examples, while documentation
often showed eight examples.

Because we designed suggestions specifically to provide con-
trasting examples and a button to help novices find code blocks,
we measured how much they used those features. 44% of par-
ticipants who accessed suggestions used contrasting examples
and accessed the contrasting example for 1.8 suggestions on
average (SD= 1.2). 38% of participants who accessed sugges-
tions used the ‘show me’ button, and on average, clicked it
3.2 times (SD= 2.5). Since participants likely will not need
these features for every suggestion, having over 30% usage

Condition Way of accessing % of accesses

Suggestions
Suggestion Panel 86.5%
Code Annotation 11.1%
Preview from Panel 2.4%

Documentation

‘?’ Button 45.1%
Expanding Parameters 29.4%
‘More Examples’ 17.6%
Next/Previous Buttons 7.8%

Table 3. Participants accessed the API information all of the different
ways in both conditions

and having participants return to use these features multiple
times seems to indicate that participants found the features
useful.
DISCUSSION AND FUTURE WORK
Given that programmers across a broad range of skill sets
describe learning or attempting to learn using ‘just-in-time’
strategies, effective situated support for API learning has the
potential to improve programmer success and efficiency, par-
ticularly for novices. The results of our study suggest that the
Example Guru approach has the potential to better support
learning of APIs during open-ended programming. Yet, there
are places where further work is needed. First, our results
found that females used fewer suggestions than males, leading
to a potential learning inequity. Second, we hand-coded our
rules for this study. To enable approaches like the Example
Guru to be used more broadly will require readily scalable
approaches to generating effective rules.
Learning APIs
To achieve mastery of a new API, novice programmers must
continue to develop their skills over time. Yet, existing re-
search suggests that novices reach a plateau in which they
quickly learn to use a subset of the available capabilities within
the system and then stop learning new skills [52, 48]. One
recent paper [36] found an increase in the number of API meth-
ods used with experience. However, the increase was small
after the initial period. Although measures of API method
use cannot tell us whether the novice programmers actually
have a full understanding of how the API methods work, pro-
grammers must first gain exposure and experience with the
API methods. Thus, this work begins to address issues in API
learning by improving the number of API methods that novice
programmers explore and use.

We believe that some of the plateau effect may be due to a
lack of appropriate learning mechanisms. While users may
consult tutorials and similar materials when getting started
with a new system or API, the use of them tends to drop off in
favor of open-ended programming and just-in-time learning
[4]. Yet, just-in-time approaches to learning often require that
programmers know the right method to query for information.
The Example Guru approach shows promise in introducing
novice programmers to a broader selection of API methods
as they work on their own projects. Rather than requiring
that they know what methods to search for, the Example Guru
observes their code and offers potentially relevant informa-
tion. Participants accessed suggestions and used API methods
from suggestions more frequently than documentation, creat-
ing more potential learning opportunities. It is important to

note that participants accessed suggestions for API methods
novices rarely use in common practice, while users in the
documentation condition chose to explore mostly commonly
used methods. Over a longer period, the increased exposure to
and use of API information could lead to substantial learning
gains.

Finally, our results suggest the potential for continued usage
by those with varying skill levels. In both the documentation
and suggestion conditions, participants with fewer than three
hours of programming experience accessed and used API in-
formation more frequently than those with more than three
hours of experience. The difference is much more dramatic in
the documentation condition where only 32% of participants
with more programming experience accessed the API infor-
mation at all. In contrast, 77% of those with more than three
hours of programming experience accessed the suggestions.
Yet, there is still room for improvement. While 40% of the
more experienced novices in our sample engaged with API
methods from suggestions, 60% did not.

Gender and the Example Guru
Our results showed different usage patterns among male and
female participants. Specifically, male participants accessed
more suggestions than female participants, averaging 4.3 ver-
sus 2.2 suggestions accessed. This is a potentially troubling
difference, as over time this can lead to an educational inequity.
Based on the results of this study, we have little information
about the reasons for this difference. Previous work suggests
that females may prefer learning using step-by-step instruc-
tions, rather than through tinkering and exploring [24] and that
females have a tendency toward comprehensive information
processing versus males’ tendency toward selective informa-
tion processing [38, 39]. However, we note that this difference
occurs based solely on the tip describing the suggestion and
before users are in a position to do much information process-
ing. This is an area where future work is needed in order to
understand and address this difference.
Rules and suggestions at scale
The manual approach that we took to create rules and sugges-
tions is a labor intensive one, so a natural direction for future
work is to explore ways to partially or fully automate this
process. Generalizing this work requires the ability to perform
two processes at a larger scale: 1) generating the rules, and 2)
creating interactive examples.

We authored our rules by hand, which involved manually
considering how expert API usage could improve novice pro-
grams. We could reduce the amount of human effort necessary
through automatic search of program corpora to identify pat-
terns of API use. By incorporating positive and negative labels
from resources like Stack Overflow, a system could likely
make a reasonable decision about the correct ways experts
use APIs and when an API method might be useful. However,
some human intuition will likely be necessary to curate the
final rules.

We designed our example code based on expert usages of API
methods. A system could select example code automatically
from online forum code with labels or a large corpus of expert
code. We also need ways to automatically select contrasting

examples and enable users to visualize examples. Contrasting
examples could be automatically generated in some cases by
changing parameter values. In other cases, API methods men-
tioned in forum threads may be relevant as contrasting API
methods. This might be another area where a small amount of
expert human opinion may be necessary, but a system could
simplify this process by presenting a list of possible contrast-
ing examples to let an expert quickly choose. Most example
code, when run, will not automatically provide a visualiza-
tion to help novices understand how it works. Approaches
like those used in Python Tutor [43] and algorithm animation
could provide visualizations of non-visual code.
Limitations
There are two limitations to this study: the population we
picked and the length of the study.

We recruited participants from a mailing list focused on STEM
which draws from a sample of more interested and self-
motivated learners than the general population. This may have
meant that participants were more interested in technology and
excited to explore the API than the norm. Furthermore, 94%
of participants had programming experience of some form,
including 82% who had been taught programming, which is
above the norm for middle school children in the US.

While the results from this initial study are exciting, it is
important to note that this study focused on a relatively short
period of time and on API use, rather than learning. While
the patterns of use suggest the potential for improved longer
term learning, it will be important to explore how novice
programmers engage with the Example Guru over a longer
period. We need further studies to understand whether the
Example Guru improves novices’ comprehension of the API
methods.
CONCLUSION
Programmers at all levels prefer to learn while working on
their own projects, but most existing tools provide API help us-
ing method names. We introduce the Example Guru, a system
that suggests context-relevant API methods to programmers
while they work on open-ended projects. Our study compar-
ing suggestions and in-application documentation found that
participants in the suggestion condition accessed and used
information about the API methods more often than partici-
pants in the documentation condition. Further, the suggestions
introduced participants to a greater diversity of methods. API
learning is a fundamental part of programming activity today.
Over time, this pattern of suggestion use could result in more
efficient and higher quality use of unfamiliar APIs.

ACKNOWLEDGMENTS
This material is based upon work supported by the National
Science Foundation under Grant Nos. 1054587 & 1440996.
We would like to thank Kyle Harms, Dennis Cosgrove, and
Randall Brachman for their feedback on this paper.

REFERENCES
1. Muhammad Asaduzzaman, Chanchal K Roy, and

Kevin A Schneider. 2015. PARC: Recommending API
methods parameters. In Software Maintenance and
Evolution (ICSME), 2015 IEEE International Conference
on. IEEE, 330–332.

2. Sushil K Bajracharya, Joel Ossher, and Cristina V Lopes.
2010. Leveraging usage similarity for effective retrieval
of examples in code repositories. In Proceedings of the
eighteenth ACM SIGSOFT international symposium on
Foundations of software engineering. ACM, 157–166.

3. Laura Beckwith, Cory Kissinger, Margaret Burnett,
Susan Wiedenbeck, Joseph Lawrance, Alan Blackwell,
and Curtis Cook. 2006. Tinkering and gender in end-user
programmers’ debugging. In Proceedings of the SIGCHI
conference on Human Factors in computing systems.
ACM, 231–240.

4. Joel Brandt, Philip J. Guo, Joel Lewenstein, Mira
Dontcheva, and Scott R. Klemmer. 2009. Two studies of
opportunistic programming: interleaving web foraging,
learning, and writing code. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 1589–1598.

5. Marcel Bruch, Martin Monperrus, and Mira Mezini. 2009.
Learning from examples to improve code completion
systems. In Proceedings of the the 7th joint meeting of the
European software engineering conference and the ACM
SIGSOFT symposium on The foundations of software
engineering. ACM, 213–222.

6. Margaret Burnett, Scott D. Fleming, Shamsi Iqbal, Gina
Venolia, Vidya Rajaram, Umer Farooq, Valentina
Grigoreanu, and Mary Czerwinski. 2010. Gender
differences and programming environments: across
programming populations. In Proceedings of the 2010
ACM-IEEE international symposium on empirical
software engineering and measurement. ACM, 28.

7. Michelene TH Chi, Miriam Bassok, Matthew W. Lewis,
Peter Reimann, and Robert Glaser. 1989.
Self-explanations: How students study and use examples
in learning to solve problems. Cognitive science 13, 2
(1989), 145–182.

8. Class : CSV (Ruby 1.9.3,) 2016. http:
//ruby-doc.org/stdlib-1.9.3/libdoc/csv/rdoc/CSV.html.
(2016). Accessed: 2016-09-20.

9. Joel Cordeiro, Bruno Antunes, and Paulo Gomes. 2012.
Context-based recommendation to support problem
solving in software development. In 2012 Third
International Workshop on Recommendation Systems for
Software Engineering (RSSE). IEEE, 85–89.

10. Davor Cubranic and Gail C Murphy. 2003. Hipikat:
Recommending pertinent software development artifacts.
In Software Engineering, 2003. Proceedings. 25th
International Conference on. IEEE, 408–418.

11. Uri Dekel and James D Herbsleb. 2009. Improving API
documentation usability with knowledge pushing. In
Proceedings of the 31st International Conference on
Software Engineering. IEEE Computer Society, 320–330.

12. Christian Dörner, Andrew R Faulring, and Brad A Myers.
2014. EUKLAS: Supporting copy-and-paste strategies for
integrating example code. In Proceedings of the 5th
Workshop on Evaluation and Usability of Programming
Languages and Tools. ACM, 13–20.

13. Martin Fowler and Kent Beck. 1999. Refactoring:
Improving the Design of Existing Code. Addison-Wesley
Professional.

14. C Ailie Fraser, Mira Dontcheva, Holger Winnemöller,
Sheryl Ehrlich, and Scott Klemmer. 2016.
DiscoverySpace: Suggesting Actions in Complex
Software. In Proceedings of the 2016 ACM Conference
on Designing Interactive Systems. ACM, 1221–1232.

15. Kyle James Harms, Jason Chen, and Caitlin L. Kelleher.
2016. Distractors in Parsons Problems Decrease Learning
Efficiency for Young Novice Programmers. In
Proceedings of the 2016 ACM Conference on
International Computing Education Research. ACM,
241–250.

16. Kyle J. Harms, Dennis Cosgrove, Shannon Gray, and
Caitlin Kelleher. 2013. Automatically generating tutorials
to enable middle school children to learn programming
independently. In Proceedings of the 12th International
Conference on Interaction Design and Children. ACM,
11–19.

17. Björn Hartmann, Daniel MacDougall, Joel Brandt, and
Scott R Klemmer. 2010. What would other programmers
do: suggesting solutions to error messages. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1019–1028.

18. Lars Heinemann, Veronika Bauer, Markus
Herrmannsdoerfer, and Benjamin Hummel. 2012.
Identifier-based context-dependent API method
recommendation. In Software Maintenance and
Reengineering (CSMR), 2012 16th European Conference
on. IEEE, 31–40.

19. Reid Holmes and Robert J Walker. 2008. A newbie’s
guide to Eclipse APIs. In Proceedings of the 2008
international working conference on Mining software
repositories. ACM, 149–152.

20. Reid Holmes, Robert J Walker, and Gail C Murphy. 2006.
Approximate structural context matching: An approach to
recommend relevant examples. IEEE Transactions on
Software Engineering 32, 12 (2006), 952–970.

21. Michelle Ichinco and Caitlin Kelleher. 2015. Exploring
novice programmer example use. In Visual Languages
and Human-Centric Computing (VL/HCC), 2015 IEEE
Symposium on. IEEE, 63–71.

22. Takeo Igarashi and John F Hughes. 2001. A suggestive
interface for 3D drawing. In Proceedings of the 14th
annual ACM symposium on User interface software and
technology. ACM, 173–181.

23. Will Jernigan, Amber Horvath, Michael Lee, Margaret
Burnett, Taylor Cuilty, Sandeep Kuttal, Anicia Peters,
Irwin Kwan, Faezeh Bahmani, and Andrew Ko. 2015. A
principled evaluation for a principled Idea Garden. In
Visual Languages and Human-Centric Computing
(VL/HCC), 2015 IEEE Symposium on. IEEE, 235–243.

24. M. Gail Jones, Laura Brader-Araje, Lisa Wilson Carboni,
Glenda Carter, Melissa J. Rua, Eric Banilower, and Holly
Hatch. 2000. Tool time: Gender and students’ use of

http://ruby-doc.org/stdlib-1.9.3/libdoc/csv/rdoc/CSV.html
http://ruby-doc.org/stdlib-1.9.3/libdoc/csv/rdoc/CSV.html

tools, control, and authority. Journal of Research in
Science Teaching 37, 8 (2000), 760–783.

25. David Kawrykow and Martin P Robillard. 2009.
Improving API usage through automatic detection of
redundant code. In Proceedings of the 2009 IEEE/ACM
International Conference on Automated Software
Engineering. IEEE Computer Society, 111–122.

26. Muhammad Asaduzzaman Chanchal K Roy Kevin and
A Schneider Daqing Hou. 2014. CSCC: simple, efficient,
context sensitive code completion. (2014).

27. Md Adnan Alam Khan, Volodymyr Dziubak, and Andrea
Bunt. 2015. Exploring personalized command
recommendations based on information found in Web
documentation. In Proceedings of the 20th International
Conference on Intelligent User Interfaces. ACM,
225–235.

28. Andrew Jensen Ko, Brad A. Myers, and Htet Htet Aung.
2004. Six learning barriers in end-user programming
systems. In Visual Languages and Human Centric
Computing, 2004 IEEE Symposium on. IEEE, 199–206.

29. Benjamin Lafreniere, Parmit K Chilana, Adam Fourney,
and Michael A Terry. 2015. These Aren’t the Commands
You’re Looking For: Addressing False Feedforward in
Feature-Rich Software. In Proceedings of the 28th
Annual ACM Symposium on User Interface Software &
Technology. ACM, 619–628.

30. Wei Li, Justin Matejka, Tovi Grossman, Joseph A.
Konstan, and George Fitzmaurice. 2011. Design and
evaluation of a command recommendation system for
software applications. ACM Transactions on
Computer-Human Interaction (TOCHI) 18, 2 (2011), 6.

31. Looking Glass Community 2016.
https://lookingglass.wustl.edu/. (2016). Accessed:
2013-02-24.

32. Yuri Malheiros, Alan Moraes, Cleyton Trindade, and
Silvio Meira. 2012. A source code recommender system
to support newcomers. In 2012 IEEE 36th Annual
Computer Software and Applications Conference. IEEE,
19–24.

33. David Mandelin, Lin Xu, Rastislav Bodík, and Doug
Kimelman. 2005. Jungloid mining: helping to navigate
the API jungle. In ACM SIGPLAN Notices, Vol. 40.
ACM, 48–61.

34. Justin Matejka, Tovi Grossman, and George Fitzmaurice.
2011. Ambient help. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
ACM, 2751–2760.

35. Justin Matejka, Wei Li, Tovi Grossman, and George
Fitzmaurice. 2009. CommunityCommands: command
recommendations for software applications. In
Proceedings of the 22nd annual ACM symposium on User
interface software and technology. ACM, 193–202.

36. J. Nathan Matias, Sayamindu Dasgupta, and
Benjamin Mako Hill. 2016. Skill Progression in Scratch
Revisited. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems. ACM,
1486–1490.

37. Frank McCarey, Mel O Cinneide, and Nicholas
Kushmerick. 2006. A recommender agent for software
libraries: An evaluation of memory-based and
model-based collaborative filtering. In Proceedings of the
IEEE/WIC/ACM international conference on Intelligent
Agent Technology. IEEE Computer Society, 154–162.

38. Joan Meyers-Levy. 1986. Gender differences in
information processing: A selectivity interpretation. Ph.D.
Dissertation. Northwestern University.

39. Joan Meyers-Levy and Durairaj Maheswaran. 1991.
Exploring differences in males’ and females’ processing
strategies. Journal of Consumer Research 18, 1 (1991),
63–70.

40. Sundar Murugappan, Subramani Sellamani, and Karthik
Ramani. 2009. Towards beautification of freehand
sketches using suggestions. In Proceedings of the 6th
Eurographics Symposium on Sketch-Based Interfaces and
Modeling. ACM, 69–76.

41. Stephen Oney and Joel Brandt. 2012. Codelets: linking
interactive documentation and example code in the editor.
In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2697–2706.

42. Jean Piaget. 1972. Intellectual evolution from
adolescence to adulthood. Human development 15, 1
(1972), 1–12.

43. Python Tutor 2017. Python Tutor - Visualize Python,
Java, JavaScript, TypeScript, Ruby, C, and C++ code
execution. http://pythontutor.com/. (2017).

44. Luisa Fernanda Hernández Ramírez and others. 2016.
API recommendation system in Software Engineering.
(2016).

45. Romain Robbes and Michele Lanza. 2008. How program
history can improve code completion. In Automated
Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM
International Conference on. IEEE, 317–326.

46. Martin P. Robillard. 2009. What makes APIs hard to
learn? Answers from developers. IEEE software 26, 6
(2009), 27–34.

47. Martin P. Robillard and Robert Deline. 2011. A field
study of API learning obstacles. Empirical Software
Engineering 16, 6 (2011), 703–732.

48. Christopher Scaffidi and Christopher Chambers. 2012.
Skill progression demonstrated by users in the Scratch
animation environment. International Journal of
Human-Computer Interaction 28, 6 (2012), 383–398.

49. Jeffrey Stylos, Andrew Faulring, Zizhuang Yang, and
Brad A Myers. 2009. Improving API documentation
using API usage information. In 2009 IEEE Symposium
on Visual Languages and Human-Centric Computing
(VL/HCC). IEEE, 119–126.

50. Suresh Thummalapenta and Tao Xie. 2007. ParseWEB: a
programmer assistant for reusing open source code on the
web. In Proceedings of the twenty-second IEEE/ACM
international conference on Automated software
engineering. ACM, 204–213.

https://lookingglass.wustl.edu/
http://pythontutor.com/

51. Aaron Wilson, Margaret Burnett, Laura Beckwith, Orion
Granatir, Ledah Casburn, Curtis Cook, Mike Durham,
and Gregg Rothermel. 2003. Harnessing curiosity to
increase correctness in end-user programming. In
Proceedings of the SIGCHI conference on Human factors
in computing systems. ACM, 305–312.

52. Benjamin Xie and Hal Abelson. 2016. Skill Progression
in MIT App Inventor. Visual Languages and
Human-Centric Computing (VL/HCC), 2016 IEEE
Symposium on (2016).

53. Cheng Zhang, Juyuan Yang, Yi Zhang, Jing Fan, Xin
Zhang, Jianjun Zhao, and Peizhao Ou. 2012. Automatic

parameter recommendation for practical API usage. In
Proceedings of the 34th International Conference on
Software Engineering. IEEE Press, 826–836.

54. Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei.
2009. MAPO: Mining and recommending API usage
patterns. In European Conference on Object-Oriented
Programming. Springer, 318–343.

55. Sedigheh Zolaktaf and Gail C Murphy. 2015. What to
learn next: recommending commands in a feature-rich
environment. In 2015 IEEE 14th International
Conference on Machine Learning and Applications
(ICMLA). IEEE, 1038–1044.

	Introduction
	Related Work
	Recommending support based on communities of users
	Overall command usage
	Recommending from sets of community examples

	Recommending support based on individual usage
	Behavior
	Artifacts

	Recommending support based on errors

	The Example Guru
	System Overview
	System design
	Rules
	Suggestions

	Evaluation
	Documentation Condition
	Participants
	Methods
	API information access and usage
	Participant features

	Study Procedures
	Baseline open-ended phase
	Training phase
	Supported open-ended phase

	Data Collection & Analysis
	Time on task
	Accessing API information and API usage
	Participant qualities

	Results
	Access and use of suggestions and documentation
	Accessing suggestions and documentation
	Using suggestions and documentation

	Do participants' demographics affect how they used suggestions and documentation?
	Age and Programming Experience
	Gender and Learning Style

	Do participants take advantage of API information features?

	Discussion and Future Work
	Learning APIs
	Gender and the Example Guru
	Rules and suggestions at scale
	Limitations

	Conclusion
	Acknowledgments
	References

