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Abstract—There are a variety of learning resources with
the potential to support children in learning programming
independently. While many of them have been evaluated in
laboratory settings, we know little about how children choose
to use these resources on their own. We conducted a study
organized around a film festival to explore children’s open-ended
use of four different learning supports: tutorials, code puzzles, in-
application documentation and code suggestions. The study began
with a workshop to introduce the programming environment and
available tools, continued through two weeks of home use, and
culminated in a film festival. Results suggest that participants
leveraged in-context forms of help most frequently, but valued
documentation for question-answering and suggestions for op-
portunistic learning.

Index Terms—novice programming; programming support;
tutorials; code puzzles; examples; documentation

I. INTRODUCTION

Learning new skills independently is a fundamental part
of software development today, across all skill levels [1]–[3].
Researchers have created and refined a variety of different
types of resources designed to support learning. While many
of these resources have been evaluated and shown promise in
a laboratory setting, we know little about how learners interact
with them in the wild. Although learning support is potentially
valuable for all programmers, we have chosen to focus on
young novice programmers for two reasons, 1) programming is
rapidly becoming a form of basic literacy and 2) opportunities
to learn programming are still limited within K-12 schools,
particularly in the United States.

We conducted a study organized around a film festival in
which we asked children between 10 and 15 to create sub-
missions using the Looking Glass programming environment.
While working on their projects, participants had access to four
different types of learning resources: tutorials, code puzzles,
in-application documentation, and static code analysis based
suggestions. Based on a combination of log file analysis and
survey results we explore the following research questions:

1) How did participants use each type of learning resource?
2) Why did participants make the learning decisions that

they did?
3) How did the use of learning resources contribute to

program complexity in their completed submissions?
4) Were there differences in usage patterns based on demo-

graphics?

Our study provides support for in-context help that assisted
participants in working directly on personal goals, with the
strongest support for code suggestions. Code suggestions were
accessed and used more than other forms of help in raw counts,
by percentage of users, and by time spent. However, partici-
pants spoke about valuing both documentation and suggestions
in different situations. Participants found documentation most
helpful when they had a specific question they were trying to
answer, while the suggestions were most helpful in supporting
opportunistic learning, pointing out programming opportuni-
ties that participants did not realize existed. Our results suggest
a need to focus on lightweight and in-context forms of help
to better support young novices in learning to program.

II. RELATED WORK

Our study is built upon prior work on learning resources and
contributes to the area of help seeking strategies and behaviors.

A. Learning Resources

Previous research has developed a variety of learning re-
sources to provide better support for novices in learning topics
like APIs, programming concepts, and complex software. We
based our implementations of our learning resources on prior
work in Documentation, Examples, Tutorials and Puzzles.

1) Documentation: Programmers often struggle when at-
tempting to learn from API documentation, partly due to
difficulties locating the documentation for the right API [4]–
[6], and inadequate examples [5], [6]. Recent research has tried
to improve the usability of API documentation by addressing
these problems. To support users in finding appropriate docu-
mentation for their needs, researchers have explored augment-
ing documentation with usage frequency information [7] and
by recommending methods to explore based on source code
analysis [4], [8]. Others have augmented documentation with
more examples by integrating information from question and
answer sites [9], [10], automatically linking code examples and
documentation [11], and making examples executable [12].

2) Examples: Based on the popularity of example use
for learning programming, researchers have designed systems
to support example use for both experienced and inexperi-
enced programmers. Systems for experienced programmers
extract relevant example code automatically and enable exam-
ple search within programing environments [13]–[15]. Reuse



support in novice programming environments similarly aids
novices in exploring, integrating, and learning from code
examples [16], [17]. However, novices may not know what
kinds of examples to seek out, so some systems for less
experienced programmers include curated sets of examples
[18], [19] or suggest examples designed to help novices
overcome barriers or gain skills [20], [21]. Finally, studies have
explored how to best present examples especially for novices,
such as: including multiple similar examples [22], providing
pairs of contrasting examples [21], adding subgoals labels to
examples [23], and explaining and visualizing code [24], [25].

3) Tutorials: Much of the research on tutorials has focused
on helping users to correctly complete a sequence of instruc-
tions. Currently, most tutorials fall into one of two categories:
1) static instructions containing images with explanatory text
and 2) videos that demonstrate the completion of a specific
task [26]. In both types of media, prior research has found that
users often struggle to correctly complete a sequence of steps,
making errors or skipping steps [27], [28]. Some tutorials
systems attempt to prevent errors by providing step by step
instructions integrated into the context of an application [29],
[30]. Within the space of video tutorials, much of the research
has focused on breaking video content into more manageable
chunks by automatically pausing to stay in sync with users
[31], focusing on short video tips that demonstrate specific
features [32], and breaking larger tutorials into a series of
single step videos [26], sometimes with multiple performances
available [33]. Finally, Ambient Help searches for relevant
tutorial content of either type and presents it on a second
monitor as users work on self-directed tasks [34].

4) Puzzles: Programming completion puzzles, more com-
monly called Parsons problems, are one of the early examples
of code puzzles, consisting of a set of randomly ordered
statements to assemble [35]. Learners assemble the code and
get feedback about correctness. Some research builds on this
early work by combining Parsons problems with program
visualization [36] and exploring techniques for dynamically
adapting the difficulty of problems to help struggling students
[37]. While not explicitly linked to Parson’s Problems, the
interest in using code puzzles to help novices learn program-
ming skills has grown dramatically in recent years. Large
scale efforts, such as Hour of Code [38], rely on puzzles to
teach. Relatively little work has explored how to maximize
learning from puzzles. Two studies have explored the design
space of puzzles and found initially positive learning results
[39]. Another found that incorporating incorrect statements as
distractors hurt learning efficiency but not performance [40].

B. Help Seeking Strategies

Our final area of related research concerns how learners
use different types of resources when working on their own
projects. This is difficult to study directly, however some re-
search has gathered information about programmers’ practices
through surveys [1], interviews [3] or through queries submit-
ted to a programming related portal [2]. These studies are
complemented by a set of lab and classroom studies in which

participants were given larger scale tasks and researchers
observed their help seeking behaviors [2], [41]–[43]. Taken as
a whole, these studies found extensive use of search, largely
in response to problems that had arisen. Participants consulted
a variety of online resources including FAQs, technical blogs,
and code examples. However, it is important to note that for
these studies, participants did not have access to diverse kinds
of help resources. Consequently, little is known about what
kinds of decisions learners might make on their own, given
differing types of available help.

III. METHODS

Our study was organized around a film festival in order
to explore participants’ use of learning resources in pursuit
of a goal. In sum, the study included an introductory work-
shop to introduce the programming environment, participants’
independent work over the course of two weeks, and the
film festival. This study explored what kinds of help learners
leveraged independently while working towards an animation
for the film festival.

A. System Overview

For this study, participants used Looking Glass [44], a
blocks-based programming environment. To construct pro-
grams in Looking Glass, learners drag and drop graphical
tiles representing methods and select parameter values using
menus. The resulting programs control the motions of char-
acters in a 3D virtual world. We used Looking Glass because
it contains four distinct types of learning resources designed
based on best practices in: 1) tutorials, 2) code puzzles, 3)
in-application API documentation, and 4) code suggestions.

1) Tutorials: Traditionally, many novice programming sys-
tems have included tutorials to support learning [45]–[47].
The tutorials in Looking Glass, as shown in Figure 1-F, were
used in previous research [39], [48] and are inspired by the
mixed media approach of mixT [26] as well as similar ones
built for Scratch [45]. To access tutorials, users must exit
an animation they are working on and choose a tutorial for
a specific programming construct and animation. Tutorials
contain a sequence of steps necessary to create a particular
program. For each step, learners see a textual description of the
action to perform and a looping video demonstrating how to
perform it. After completing a step, learners progress through
the tutorial by pressing “next”, as shown in Figure 1-G.

2) Puzzles: Many recent systems for supporting children
in learning programming include programming puzzles [38],
[39], [49]. The puzzles in Looking Glass have been carefully
designed in prior work to enable learning, and are shown in
Figure 1-H [39]. Like tutorials, users must close their current
project to access puzzles. Users can choose to create a variety
of short animations through a puzzle based on the animation
or the constructs that the puzzles teach. Once a user selects
a puzzle, they drag and drop the code blocks from the bin
in order to solve it (see Figure 1-I,J). They can check their
work by playing their animation and comparing it against the
correctly assembled program via “Play Correct”. As the puzzle



Fig. 1. The Looking Glass programming environment (A). We gave participants three activities: 1) program their own 3D animation (New World or My
Worlds), 2) work on a Puzzle, or 3) follow a Tutorial. When authoring their own animation, participants were presented with suggestions (B) to improve their
code. If the user clicks on a suggestion (B), they are shown an example (C) in a separate window on how to improve their code. Participants may also utilize
the built-in API documentation by clicking the ‘?’ button (D) next to each API method. When clicked, a window with documentation for each parameter in the
method (E) pops up (only duration is shown in the figure). Alternatively, participants may opt to use a tutorial (F) by following the step-by-step instructions
(G) to recreate an animation within the code editor (A). Lastly, we also gave participants the option to solve code puzzles (H). In the puzzles, participants are
given a blank program where they reassemble it by dragging unused statements (I) into the puzzle’s solution (J).

executes, Looking Glass provides feedback on correctness of
the current actions playing to help users resolve errors.

3) Documentation: The documentation we partially based
on the supports provided through online API documentation
such as Javadoc. However, for programming languages like
Java, IDEs provide code completion as a resource for pro-
grammers in addition to documentation.The documentation
support within Looking Glass is designed to provide similarly
easy-access to information about how to use the methods and
constructs within the system [50]. To access information for a
method, learners can press a ‘?’ button next to each graphical
tile as in Figure 1-D. This brings up a new window which
shows a series of code examples involving that tile (Figure 1-
E). The examples cover all of the available parameters for each
method. Learners can play each example independently. The
documentation for each method contains previous and next
buttons that takes them to the entry for the previous and next
method in the API respectively.

4) Suggestions: Finally, a few systems have explored pro-
viding programmers with code suggestions designed to im-

prove their programs [20], [21], [51]. The suggestions system
within Looking Glass offers tips to users based on the code in
their programs, as shown in Figure 1-B,C [21]. When a user
executes their program, the system runs static code analysis
to find code that could benefit from an unused API or code
construct. For example, a user whose program has a character
walking a long distance might benefit from learning about
the walkpace argument that makes characters walk faster. To
prevent overload, the system makes at most one suggestion
each time the user executes their program.

Users can access suggestions from a panel where they are
listed, as shown in Figure 1-B, or light bulb icons that appear
on the code blocks. In either case, clicking on a suggestion
opens a more detailed view containing contrasting examples,
such as slow and fast walkpaces (Figure 1-C). Learners can
view the code for each example and also watch the animation
execute. Finally, users can click a ‘Show Me’ button that points
them to the location of the relevant code block in the interface.

In this study, we used an initial set of suggestions and rules
created for an earlier study [50]. They were designed based



on API methods experts used more often than novices. In
order to align better with the other resources, we supplemented
the set of available suggestions in two ways: 1) we added
suggestions for all API methods that were used at least 10%
more frequently by experts than novices, and 2) we provided
suggestions for constructs, such as the repeat loop.

B. Participants

We recruited participants between the ages of 10-15 from
a local STEM Mailing List. 84 participants attended the
introductory workshop. Of those, 39 participants completed an
animation for the film festival. Three others did not complete
a film festival submission, but returned their Looking Glass
usage data. Two of these participants did not work with
Looking Glass after the introductory workshop, so we have
excluded those participants. In sum, we analyzed Looking
Glass usage data for 40 participants (19 female, 21 male) who
had an average age of 11.73 (SD = 1.3), and 62.5% of them
had more than 3 hours of previous programming experience.
There was no limitation on the experience with programming
since we are interested in the effect of different programming
experience on the use of learning resources. We compensated
the participants with $10 Amazon gift cards.

C. Study Procedures

Our study focused on how participants used learning re-
sources in an independent context. The study included an
introductory workshop, participants’ time at home working
with Looking Glass, and a final in-person film festival. As
we wanted to explore participants’ behavior around learning
resources in an open-ended context, all participants had access
to all learning resources.

1) Workshop: The introductory workshop serves two goals:
1) introduce the mechanics of creating programs in Looking
Glass, and 2) ensure that participants know how to access
each learning resource. The workshop took an hour and a
half, divided into 40 minutes focused on creating programs in
Looking Glass and the rest devoted to the learning resources.

Before getting started, we asked participants to complete
a computing history survey that gathered basic demographic
information as well as their previous programming experience.

The introduction to Looking Glass included both how to
create a scene and how to animate it. We began with a short
demonstration showing how to add characters and objects to
the 3D scene as well as how to position them within the
scene. Participants then had 15 minutes to create a scene
for use during the remainder of the workshop. Next, we
demonstrated how to write simple, sequential programs by
selecting characters and dragging actions into the code editor.
Participants then spent the next 15 minutes creating a simple
program. Many participants went beyond these basic skills
when building their own programs. We collected the initial
programs that participants created to serve as an additional
measure of prior programming experience.

During the second part of the introductory workshop, we
focused on introducing participants to the available learning

resources. To streamline the process, we had participants
continue to work using the scene and program they had created
in the first part of the workshop. We began by introducing the
documentation and suggestions, which can be accessed while
working on a program. We showed participants where to find
both and directed them to complete a simple task using the
information found in each. Finally, we asked participants to
complete one tutorial and one puzzle focusing on the parallel
construct, Do Together, which is often the first programming
construct that Looking Glass users begin to employ.

Throughout all of the sessions, researchers circulated to
ensure that participants were following the directions and
staying on the task. Participants also had a reference sheet
showing them how to complete each of the steps covered
during the workshop. We encouraged participants to take the
sheet home with them to serve as an ongoing reference. At the
close of the session, we gave each participant a USB key that
allowed them to run Looking Glass on their home computer
without installing anything. This version of Looking Glass was
augmented to store detailed logs of participants’ interactions
with Looking Glass and present surveys about their behaviors.

2) Film Festival Preparation: Participants had two weeks
between the introductory workshop and the film festival to
work on their submissions. As they worked, Looking Glass
logged information about their use of the system, including
which learning resources they were offered and/or interacted
with. Additionally, participants completed surveys about their
choices surrounding the use of learning resources.

3) Film Festival: The primary goal of the film festival
was to serve as a motivation to complete an interesting
animation within the two weeks following the introductory
workshop. When participants returned for the film festival, we
collected their USB keys containing their survey and usage
data. We did not collect any additional information during
the film festival. We simply showed all of the programs that
participants submitted to the assembled audience.

D. Data Collection and Analysis

We logged the actions that users took within Looking Glass
and collected several surveys over the course of the study .

1) Access and Usage of Educational Support: We instru-
mented Looking Glass to log participants’ actions within
Looking Glass, including their interactions with the four types
of learning resources. We used this raw data to compare
how participants used the different learning resources. It is
important to note that the four resources that participants
had available were quite different in nature and designed for
different purposes and so making comparisons between them
is not straightforward. The documentation and suggestions
were both accessible while participants worked on their film
festival submissions, where tutorials and puzzles required that
they close their current program to open one related to the
target learning content. Suggestions are offered to participants
when relevant; participants request documentation. The spe-
cific skills available through each varied to some degree, as
well. The tutorials and puzzles we used were both designed for



the purpose of teaching programming constructs. Suggestions
and documentation both focus more strongly on API methods
than constructs. There were a large number of resources of all
types: 46 tutorials, 46 puzzles, 68 documentation entries, and
85 suggestions (of which participants were offered an average
of 14.25 suggestions (SD = 6.67)).

We compared participants’ access to and use of learning
resources in three different ways: 1) by raw counts, 2) by
the proportion of participants who interacted with each type
of resource, and 3) by time spent with each resource. We
tracked access to each learning resource using the log data
showing that resource being opened. We tracked use of skills
by filtering log data to find situations in which the participant
used a new API or programming construct for the first time
after having accessed help related to that topic.

2) Surveys: At the introductory workshop, we asked par-
ticipants to complete a survey to gather information on de-
mographics and programming experience. Additionally, we
wanted to collect information about the rationales behind
participants’ help usage decisions. To do this, we instrumented
Looking Glass to display a quick survey every hour for the first
five hours of usage, and every two hours after that. The survey
asked participants why they did and did not use particular
resources and what they learned from the resources they did
use. After completing their film festival submission, we asked
participants to complete one final survey asking them how they
approached learning skills while creating their submission and
how they would advise a friend to use the available resources
if preparing for a similar film festival.

3) Complexity: Finally, to enable us to explore the relation-
ship between help access and their final program complexity,
we computed a complexity measure. At a high level, we see
two classes of skills that programs can incorporate: skills
related to API use and skills related to construct use.

While a greater diversity of API use is one reasonable
measure to consider, we wanted to augment pure diversity with
similarity to the API usage of experts. To do this, we compiled
a list of methods used in expert and novice animations sampled
from the Looking Glass community. We assigned two points
to methods used more by experts than novices and one to
methods used more by novices than experts.

We measured the complexity of construct use in a program
by summing the nesting degrees for constructs in each partic-
ipants’ film festival submission.

IV. RESULTS

This study seeks to answer four research questions: 1) how
much and when did participants access and use each educa-
tional resource, 2) why did participants make such learning
decisions, 3) how much did the use of educational resources
influence the complexity in their final submission, and 4) did
demographics affect the usage of educational resources.

A. How much and when did participants access and use each
educational resource?

In answering our first research question, we looked at three
kinds of data: 1) the numbers of times participants accessed

and used methods or constructs from the learning resources,
2) the proportion of users who interacted with each type of
learning resource, and 3) the time participants spent with each
type of learning resource, see Table I. To reduce the chances
of Type 1 error, we used the Bonferroni correction, dividing
the cutoff for significance by the number of follow-up tests.
This resulted in an adjusted alpha level of 0.0083.

1) Access and Usage Counts by Learning Resource:
Participants accessed in-context forms of help more frequently
than other learning resources, but used information accessed
through suggestions more often. Participants accessed sug-
gestions (M = 4.2,SD = 5.2) significantly more often than
they accessed tutorials (M = 0.025,SD = 0.16) and puzzles
(M = 0.3,SD = 0.88). There was no significant difference
between the number of suggestions and documentation entries
(M = 2.75,SD = 9.15) participants accessed. We also found
that participants used information from suggestions signifi-
cantly more often than information from any of the other
forms of help. Participants used significantly more methods
and constructs that they were exposed to via suggestions
(M = 1.275,SD = 1.811) than through documentation (M =
0.25,SD= 0.84), puzzles (M = 0.325,SD= 0.89), and tutorials
(M = 0.025,SD = 0.16). There were no significant differences
in the use of information viewed through documentation,
tutorials and puzzles. However, both the variation in the
learning resources available in different forms and the time
investment necessary to use those resources likely have an
impact on the raw numbers of accesses.

To address the differences in content availability in re-
sources, we looked at the access and use for the topics
available across all four learning resources. Here, we again
find a preference to access suggestions (M = 1.4,SD = 1.6)
over documentation (M = 0.375,SD = 1.13), tutorials (M =
0.025,SD = 0.16) and puzzles (M = 0.275,SD = 0.85). Par-
ticipants used significantly more methods and constructs after
viewing suggestions (M = 0.275,SD = 0.679) than after view-
ing tutorials (M = 0,SD = 0), but we did not find a significant
difference for the number of methods and constructs viewed
through suggestions from those added after documentation
(M = 0.025,SD = 0.158) or puzzles (M = 0.125,SD = 0.463).
There were no significant differences in the rates of access
and use among documentation, tutorials, and puzzles as well.

2) Proportion of Participants Accessing and Using Learn-
ing Resources: To support independent learning, we ideally
want a large proportion of users to access learning resources
and to use some subset of the methods and constructs intro-
duced by the learning resources they access. Here, we find that
suggestions were accessed and used by a significantly larger
proportion of participants than the other types of learning re-
sources. 70% of participants accessed at least one suggestion,
as compared to 27.5% for documentation, 17.5% for puzzles,
and 2.5% for tutorials. Further, 53% of participants used at
least one method or construct introduced via suggestions,
versus 15% for both documentation and puzzles, and 2.5%
for tutorials. The proportion of participants who accessed
documentation is also higher than the proportion for tutorials.



TABLE I
SUMMARIZED RESULTS FOR ACCESS AND USAGE OF EDUCATIONAL RESOURCES

Measures Set of Topics Main Statistic
Paired Post-hoc Tests - p value

Suggest.- Suggest.- Suggest.- Doc.- Doc.- Tut.-

Doc. Tutorial Puzzle Tut. Puzzle Puzzle

# Accessed
All topics F(3,117) = 6.66, p < .001∗∗∗ .22 < .001∗∗ .001∗∗ .02 .04 .82

Topics in all resources F(3,117) = 15.5, p < .001∗∗∗ < .001∗∗∗ < .001∗∗∗ < .001∗∗∗ .14 .68 .3

# Used
All topics F(3,117) = 10.65, p < .001∗∗∗ < .001∗∗∗ < .001∗∗∗ < .001∗∗∗ .36 .76 .22

Topics in all resources F(3,117) = 3.41, p = .02∗ .0084 .004∗ .11 .79 .29 .18

Use to
access ratio

All topics F(3,117) = 10.44, p < .001∗∗∗ < .001∗∗∗ < .001∗∗∗ < .001∗∗∗ .4 .53 .14

Topics in all resources F(3,117) = 4.11, p = .008∗∗ .005∗ .001∗∗ .02 0.7 .64 .39
%
participants
accessed

All topics χ2(3) = 48.53, p < .001∗∗∗,φc = .55 < .001∗∗ < .001∗∗∗ < .001∗∗∗ .005∗ .42 .06

Topics in all resources χ2(3) = 38.36, p < .001∗∗∗, φc = .49 < .001∗∗ < .001∗∗∗ < .001∗∗ .11 1 .06
%
participants
used

All topics χ2(3) = 33.61, p < .001∗∗∗, φc = .46 < .001∗∗ < .001∗∗∗ < .001∗∗ .11 1 .11

Topics in all resources χ2(3) = 11.23, p = .011∗, φc = .26 .06 .02 .31 1 .61 .24

Time spent All topics F(3,117) = 4.21, p = .007∗∗ .006∗ .002∗ .03 .75 .57 .38

Main Statistic - *** p < .001, ** p < .01, * p < .05

Fig. 2. Amount of time spent (in minutes) on each resource accessed at every
quartile of the animation creation

3) Time Spent by Learning Resource: Given that it takes
substantially longer to work through tutorials and puzzles
than it takes to view a documentation entry or a suggestion,
we also compared the time participants spent viewing the
different learning resources and how participants allocated
that time throughout the study. Participants spent significantly
more time viewing suggestions (M = 2.89,SD = 6.95) than
documentation (M = 0.41,SD = 1.48) and tutorials (M =
0.12,SD = 0.78). There was no significant difference between
the amounts of time participants spent viewing suggestions
and puzzles (M = 0.91,SD = 3.56).

Participants accessed learning resources throughout the
course of the study. Figure 2 shows the total time spent on
the four types of learning resources by quartile of time in
the study. We determined quartiles based on the total length
of time each individual participant worked on his or her film
festival submission. Most participants accessed suggestions for
an increasing amount of time over the first three quartiles,
with a substantial drop during the last quartile. This may
suggest that participants found value in the suggestions, as
their work patterns changed to incorporate more suggestions

later in the session. We think the drop may correspond with
participants working to polish their submissions. In contrast,
participants’ use of documentation and puzzles were highest
in the first quartile and decreased in subsequent quartiles.
However, we note that a single user paged through more than
30 documentation entries at the end of their creation, causing
an increase in the average time spent shown in Figure 2.

B. Why did participants make the above learning decisions?

Overall, the survey results suggest that participants valued
the suggestions for opportunistic information and the doc-
umentation entries to answer specific questions. Also, most
participants expressed a desire to work on their own creations
and felt that tutorials and puzzles would take them away
from their own work. They perceived the suggestions and
documentation as sufficient support for their needs.

1) Opportunistic Information: Participants explained that
suggestions often introduced them to new elements to use in
their programs. As one participant said, “Tips help suggest
things that you might want to include.” Another suggested that
Looking Glass users should open any offered suggestion “even
if it doesn’t correspond to the action they wished to complete
[because] it would give them ideas.” Some participants also
valued suggestions that showed them how to use methods in
new ways: “I used them because they corresponded with the
actions I wished to execute. I learned how to complete the
same actions I wished to accept in a more efficient way.”
Overall, participants seemed to value the fact that suggestions
helped to provide the answers to questions they did not
know to ask. Some participants reported struggling to use
documentation in a similar opportunistic way: commented “I
used ‘?’ [i.e. documentation] to see what it would help me
with and it didn’t help at all.”

2) Answering Questions: While suggestions were used
more opportunistically, participants seemed to find documen-
tation most helpful in answering a specific question. For



TABLE II
DETAILED STATISTICS FOR ACCESS AND USAGE OF EDUCATIONAL RESOURCES VS. COMPLEXITY

Model statistic
Coefficients, t(35) and p values

Intercept Suggestion Documentation Tutorial Puzzle

# Accessed vs. API
complexity

F(4,35) = 9.74, p < 0.001∗∗∗ β , t 13.02, 10.19, 0.79, 2.82, 0.45, 3.75, −3.73, −0.3, −0.44, −0.19,

R2 = 0.527 p < 0.001∗∗∗ 0.008∗∗ < 0.001∗∗∗ 0.77 0.85

# Used vs. API
complexity

F(4,35) = 8.52, p < 0.001∗∗∗ β , t 13.92, 10.49, 0.64, 1.03, 7.12, 5.79 −1.27, −0.19, 1.17, 0.97,

R2 = 0.493 p < 0.001∗∗∗ 0.31 < 0.001∗∗∗ 0.85 0.34

# Accessed vs.
constructs complexity

F(3,36) = 0.247, p = 0.86 β , t 1.68, 4.44, −0.21, −0.79,
-

−0.9, −0.23, 0.21, 0.31,

R2 = 0.02 p < 0.001∗∗∗ 0.44 0.82 0.76

# Used vs. constructs
complexity

F(3,36) = 3.68, p = 0.02∗ β , t 1.12, 3.58, 1.54, 3.3,
-

−0.45, −0.25, 0.16, 0.51,

R2 = 0.235 p 0.001∗∗ 0.002∗∗ 0.8 0.61

example, one participant stated “I used ‘?’ help because there
was an option that I selected through the ‘more’ button that
I did not understand.” However, participants tended to report
less success when they could not articulate a specific question.
Participants who turned to suggestions with specific questions
also struggled: “I used tips to find out how to edit a phrase
after I already wrote it. I couldn’t find the answer in tips.”

3) Remaining in Context: Participants voiced a preference
to concentrate on their programs, and felt that tutorials and
puzzles would be a diversion. For example, one participant
stated “I didn’t use the puzzles because I just wanted to focus
on my animation”. Another said “Tutorials and puzzles might
be useful but not if you don’t want to exit your program.”
The tutorials and puzzles inherently ask learners to adopt a
new goal that contributes only indirectly to their film festival
submission. They may learn a new skill, but will still have
to find ways to use that skill in the context of their own
program. Participants wanted to continuously feel as though
they were making progress on their immediate goals. As one
participant stated, “I strongly suggest the tips because they
are easy to access and give you very direct directions and
examples.” However, those that did use puzzles found them
both fun and helpful, such as one participant who stated “I
mainly just used them to have fun, and I did learn a bit about
the coding from them.”

Participant surveys also suggest that many participants did
not feel a strong need for additional help beyond suggestions
and documentation. One participant stated that “I learned about
[new topics] from documentation and tips” and, consequently,
felt no need to explore the tutorials and puzzles. Others were
confident in their skills and abilities overall and did not see
utility in tutorials and puzzles, “I didn’t use tutorials and
puzzles because I have prior experiences with Looking Glass
and knew how to code well.”

C. How did the use of learning resources relate to the com-
plexity of the submitted animation?

While the access and usage statistics provide some insight
into how well learners were able to apply information viewed
through the different learning resources, we were also inter-
ested in how the access and use of skills from the different
learning resources contributed to the overall complexity within

TABLE III
ACCESS AND USAGE OF LEARNING RESOURCES BETWEEN DIFFERENT

DEMOGRAPHICS

Demographics Action for resources Statistics

Age Accessed F(3,114) = 0.03, p = 0.99
Used F(3,114) = 0.39, p = 0.76

Gender Accessed F(3,114) = 0.399, p = 0.75
Used F(3,114) = 1.095, p = 0.35

Programming
Experience

Accessed F(3,114) = 0.17, p = 0.92
Used F(3,114) = 0.63, p = 0.598

participants’ final programs. It is important to note that the
final complexity measure includes a potentially broader set of
API and construct skills than they saw through the learning
resources, as some participants may have explored other
methods and constructs. To examine the impact of the learning
resource types on overall complexity, we constructed a set of
four regression models that predicted the construct and method
complexity based on the access and usage data for each of the
learning resources, see Table II.

The regression models for the API complexity explained
52.7% of the variance in API complexity using access and
49.3% of the variance using usage information. Given the
amount of individual variation we see among young program-
mers, we think these are fairly strong models. The coefficients
for suggestions and documentation were significant for the
access model, but only the documentation coefficient was
significant for the usage model. In combination with the access
and use results showing less usage of documentation than
suggestions, this may suggest that participants who used the
documentation were also more likely to explore other API
methods, beyond those introduced through documentation.

Our regression models struggle to explain the construct
complexity. The access model explains only 2% of variation
and is not significant, while usage does somewhat better at
23.5%. Only the suggestions coefficient is significant. This
is likely a reflection of participants’ tendency to use the
suggestions and documentation, overall.

D. Were there differences in usage based on demographics?

Prior studies have found differences in programming be-
havior by gender [50], [52], age [40], and programming ex-
perience [50], [53]–[55]. Because such differences can lead to
inequities between groups, we felt it was important to look for



effects regarding the access and usage of learning resources.
We found no significant differences in both usage and access
of educational resources for age, gender, or programming
experience (see Table III). This result contrasts with an earlier,
lab-based study that found differences in the use of suggestions
and documentation by gender and coding experience [50].

V. THREATS TO VALIDITY

The primary threat comes from our participant selection.
Participants were recruited through a science-related mailing
list and may have had stronger motivation towards and aptitude
for technical topics and activities. Other groups of youth who
do not identify as interested in science may use help resources
differently. We also note that the film festival structure created
an incentive to keep working on a project. Users who use the
system independently, without a specific target in mind may
also behave differently.

VI. DISCUSSION AND FUTURE WORK

Our study is one of the first to explore the usage of different
learning resources in a support-rich programming environ-
ment. In our study, participants accessed in-context help most
frequently because they were strongly motivated to work on
their own programs and hesitated to leave their work context to
pursue learning goals. They felt that the two in-context help
options were sufficient for their needs, although they were
used differently. Participants valued suggestions for helping
them find new methods and constructs to use or new ways to
use ones already in use. In contrast, participants typically used
documentation when they had a specific question.

One of the potential concerns around the use of suggestion
systems is that not all of the suggestions will be of use
to a particular user. This was true in our study. However,
participants were 3.7 to 5 times more likely to make use
of information from a suggestion than from a documentation
entry, based on the different sets of methods evaluated. While
not all of the suggestions generated were helpful, overall the
system seems to have selected a highly relevant set of content.

While tutorials and puzzles were used less frequently than
documentation and suggestions, we note that they actually
have the highest use to access ratio: 86% for puzzles and
100% for tutorials. However, the use of puzzles and tutorials
were still low compared to the in-context learning resources.
We note that the suggestions in particular are designed to
help users see their potential relevance within their current
program. The suggestions provide descriptions with specific
references to objects within users’ animation, inviting, for
example, a user with an alien in their program to “Make the
alien walk faster.” Helping users to connect the content in
puzzles with their current goals may help to entice more users
to complete puzzles and tutorials. One specific opportunity
comes through the use of constructs. Construct behavior can be
substantially more complex than that of a single API method.
Our study suggests that a small population of users may have
struggled to learn constructs using suggestions alone. Users
who repeatedly open a construct-related suggestion might

benefit from a recommendation for a puzzle or tutorial that
will help them understand the use of that construct.

Most research to date has focused on the design of out-
of-context forms of help, especially tutorials, rather than in-
context help, creating an opportunity to further explore in-
context help. Our study suggests that users are most likely
to explore from in-context forms of help and that suggesting
potentially relevant programming elements to explore is of
particular value. While suggestions and documentation are two
valuable points in the design space of in-context help, we
believe these results point to the need for a broader exploration
of in-context help for novice programmers.

Further, we note that while the puzzles and tutorials were
used less frequently, they resulted in a higher proportion of
uses per access than suggestions and documentation. One
of the important differences between these two groups of
help resources is the time users spend with each help item.
Suggestions and documentation are designed for and used
quickly. Short usage times may impose limits on what topics
users can effectively learn. Another interesting direction for
future work is to explore the potential for using in-context
help to motivate users to engage with longer-use forms of
help such as puzzles and tutorials.
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