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ABSTRACT
Independent novice programmers in open-ended contexts rely
on help systems to support their learning. These help sys-
tems are often laboriously hand-authored by experts. This
paper describes a semi-automatic process for the creation of a
suggestion-based help system. We demonstrate and evaluate
the potential utility of our approach within a blocks-based pro-
gramming environment for children. With less human effort
per suggestion, our approach generated a set of suggestions
comparable to a hand-authored set and a set of original sug-
gestions. We ran a study to explore the number and types of
suggestions children received, accessed, and used. In 30 min-
utes, children on average received 9 suggestions, accessed 2.6
suggestions, and inserted 0.8 new concepts from suggestions.

CCS Concepts
•Human-centered computing → Interactive systems and
tools; •Applied computing→ Interactive learning environ-
ments;

Author Keywords
Novice programming; recommender systems; code examples

INTRODUCTION
Many children begin to learn programming independently.
These children often start coding in motivating open-ended
contexts where they can create games [34], apps [25], and ani-
mations [10]. Open-ended means that the novices choose what
project to create based on their interests, rather than working
on a task with a specified solution. In order to gain skills while
pursuing open-ended projects, independent novices must seek
out hand-authored resources, like tutorials [34] and documen-
tation. Despite the availability of these resources, novices
coding without tasks often plateau [40]. One way to reduce
this plateau may be through context-sensitive suggested exam-
ples, which encourage novice children to explore new skills
[15, 17]. Creating suggestions with minimal human effort
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would enable generation of suggestions for large systems with-
out significant expert effort.

We describe an approach for semi-automatically generating
content within a suggestion-based help system for open-ended
programming. In this approach, a system can generate candi-
date suggestions by grouping code examples. One group of
examples could include characters moving in multiple direc-
tions at the same time, leading to a suggestion about making a
character jump diagonally. To group code, an expert defined
two metrics: 1) types of objects, like characters or props, and
2) types of actions the objects take, such as changing posi-
tion or changing size. Using these metrics for code similarity,
the system can then generate any number of suggestions with
the following steps: 1) system extracts code snippets from a
repository, 2) system groups code examples using heuristics,
3) human moderates, and 4) system generates a script that
checks whether novice code should receive the suggestion.

We evaluated our approach for semi-automatically generat-
ing suggestions in two ways: 1) we compared the semi-
automatically generated content to a hand-authored set created
for a separate study, and 2) we ran a study in which children
had access to suggestions for 30 minutes in an open-ended con-
text. The semi-automatically generated suggestions cover all
but two of the hand-authored set and also generated an original
set of suggestions. Children on average received 9, accessed
2.6, and used close to one suggestion in just 30 minutes.

RELATED WORK
The overarching ideas in this approach relate most closely
to: support for learning at scale, recommendation systems for
programmers, and methods for finding similar code.

Automated Support for Learning
Researchers have designed ways to help learners of content
and software at a large scale, both in task-based and open-
ended contexts. In task-based contexts like intelligent tutoring
systems, researchers have worked to develop content, hints [31,
29, 37], and feedback [14, 18] for users in automated and semi-
automated ways. However, systems automatically generating
hints for open-ended tasks, like the Hint Factory [29], can still
leverage the similarity of student work and knowledge of the
solution to generate tips. Automatically generated tutorials can
also help novices learn programming [12], as well as similar
types of technical skills like photo-manipulation [9, 6] with
minimal expert effort. These systems all require a known task
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and solution in order to generate hints toward that solution.
Our approach generates hints for programmers without pre-
specified tasks, like reuse and recommendations in unbounded
contexts. Some systems provide support for reusing others’
programs, like remixing in Scratch [34], or Looking Glass [11].
There are also some systems that recommend commands based
on how communities often use them [21, 23]. Our approach is
unique in semi-automatically generating motivating suggested
examples for novice programmers who have designed their
own projects, rather than for novices working on tasks given
to them.

Recommendations for Programmers
Recommendation systems support non-expert programmers in
overcoming barriers and experienced programmers in use of
APIs and software maintenance. Recommendations for non-
experts typically help them fix bugs, like making suggestions
when users are following the wrong path in a task [20]. A set
of systems recommend code examples or web responses based
on errors [2, 7, 13, 27, 30]. Recommendations for profes-
sional programmers center around library functions, or code
maintainability. Several systems recommend code examples
to support API learning based on the structure of code [16],
sets of methods commonly used together [42], or a program-
mer’s comments [41]. Other systems support maintainability,
like suggesting alignment with the style of a code-base [1],
suggesting code that likely needs to be modified based on
previous modifications [43], and encouraging ‘best-practice’
use of a programming language [8, 39]. Our suggestions focus
on how to increase novices’ exposure and use of programming
constructs through motivating examples.

Selecting Related Code
Our approach finds groups of related code to form suggestions
and then finds novices’ code that would likely benefit from that
suggestion. Existing processes for selecting relevant code use
varying levels and types of extra context, like short queries [5,
24, 32, 38], broader code structures [3, 16, 26], frequency of
terms [28, 35], the language and framework [4], or timing [42].
One system determines the behavior of code using information
retrieval techniques on the code and description text [33, 36].
Our approach uses only the categories of code and the methods
and objects, rather than using all of the exact code.

PROGRAMMING ENVIRONMENT & EXAMPLE GURU
We implemented the semi-automatic suggestion generation
approach for a suggestion system called the Example Guru
within the Looking Glass programming environment.

Looking Glass Programming Environment
Looking Glass is a blocks-based programming environment
for children aged 10-15 to make 3D animations [10]. It pro-
vides objects to create scenes and blocks that control the ob-
jects (see Figure 1). A scene contains characters (i.e. people
and animals), props (i.e. trees, couches, snowboards), and
the scene objects (i.e. the ground, the camera). To create
animations, users can drag and drop two types of code blocks:
actions (i.e. move, say, resize, disappear), or programming
constructs (i.e. simple parallel execution Do together, or a
loop). Looking Glass’s suggestion system called the Example
Guru suggests examples based on novices’ code [17].

Figure 1. (A) Looking Glass. (B) List of suggestions. (C) An accessed
suggestion. (D) The two code examples. (E) The code for this Do together
suggestion. (F) Preview execution of the code.

The Example Guru
To make suggestions to novice programmers, the Example
Guru has three components: 1) rules, which are scripts that
analyze novice programs, 2) a suggestion for each rule that in-
troduces a new concept, and 3) a pair of examples that demon-
strates the concept. When a user executes their program, rules
statically analyze the novice’s program. For Figure 1, the rule
checks for two move actions in a row with the same charac-
ter (person, animal, or creature). It triggered the suggestion
‘Make a character move diagonally’. Each rule has an associ-
ated suggestion that triggers based on certain types of code.
Suggestions include a title and a pair of examples that demon-
strate how to use a code block. When a suggestion is triggered,
the title appears in a list near the code block menu (see Fig-
ure 1-B). Each suggestion only appears once, but remains in
the list throughout the session. When a user accesses a sug-
gestion, a window opens with two examples and the option to
execute them (see Figure 1-C).

SUGGESTION GENERATION APPROACH
This approach aimed to generate suggestions and rules with
minimal human effort per suggestion. It requires initial setup
by an expert to define the ways the system will group code. Af-
ter that, the approach can generate any number of suggestions
and rules with four steps: 1) example extraction, 2) exam-
ple grouping for candidate suggestions, 3) human moderation
(example selection + labeling), and 4) rule generation.

Input Repository
We used a repository of 1313 blocks programs containing: 1)
585 programs created by expert researchers, and 2) 728 pro-
grams created by non-experts. Researchers in our lab created
the expert programs previous to this work for other purposes.
The non-expert set of programs contains programs created in
past user studies and programs shared to the Looking Glass
online community by non-lab members [22].

Initial Setup
This approach requires initial setup by an expert, who selects:
1) which code concepts to suggest, and 2) how the system
should group code snippets and generate rules. The expert



Set Type Specific Examples

Objects
sentient person, dog
(sentient’s) joint wing, arm, neck
prop sofa, camera

Actions

communicate say, think
sound playsound
position move, walk
orientation turn, roll
appearance setcolor, appear
size resize, setwidth
timing delay
vehicle setVehicle

Table 1. Objects and actions used for binning snippets.

selected which code blocks the system will suggest to the
novice programmer. Many systems may benefit from generat-
ing suggestions for all types of code. We wanted to generate
suggestions for young extremely novice programmers. The
expert chose to generate suggestions for the parallel execution
block called Do together and the loop block called Repeat.

In order to group the extracted code snippets and generate
rules, the system needs heuristics to determine whether code
snippets have similar animations. Groups of snippets with
similar animations, like snippets that all make the camera
zoom, can become suggestions. For Looking Glass, the expert
defined types of objects and methods that would have similar
animations, as shown in Table 1. Objects have three types: sen-
tient characters, sentient character’s joints, and props. Actions
have eight groups: communicate, sound, position, orientation,
appearance, size, timing, and vehicle.

Example Extraction
In order to generate groups of examples, the system needs
to extract snippets from a repository of code that contain the
code that will be suggested. We generated suggestions for the
Do together and Repeat code blocks. We chose to select a
snippet containing only the concept, like the Do together and
the code within the Do together, and not any surrounding code.
In other contexts, more surrounding code might be useful. The
extracted snippets feed into the Example Grouping phase.

Example Grouping
The Example Grouping generates candidate suggestions. It
does this by sorting the code snippets for a certain concept into
groups of code with similar output. The grouping algorithm
uses the object and action types defined by an expert in the
Initial Setup, shown in Table 1. The grouping algorithm
also uses the number of each type of object and action. The
algorithm determines if two code snippets should be in the
same group based on the following criteria:

• All code snippets in a group have the ‘same’ number of
objects of each type: 0, 1, or 2+. If snippets have two or
more objects of the same type, the approach considers them
the same. The suggestion in Figure 1 has one sentient object,
which is a dog in one example and a person in another. A
group of examples could also contain an example with three
dogs and an example with two people.
• All code snippets in a group have objects of the same type

performing either 1 action of the same type, or two or more
actions of the same type. The suggestion in Figure 1 has

Required Actions visible in execution preview, correct use of con-
struct,no sexual, vulgar, or violent content, no errors

Ideally Code should use minimal extra arguments, two examples
should use constructs differently, objects should have intu-
itive names, two example should have different scenes

Exclude Examples that do not fit in suggestion, Identical examples,
Group if it does not have two examples

Table 2. Human moderation criteria

one sentient object performing two position actions. This
code group could also contain examples with one sentient
object performing more than two position actions.

The example grouping results in groups of examples where the
object types and action types align to create similar animations.
In our system, this grouping process resulted in 158 groups
with more than two code snippets for the loop, parallel execu-
tion and nested combinations. We chose to only use groups
with more than two example snippets because many of those
with only two had two of almost exactly the same animation.

Human Moderation
The main objectives of the human moderation step are to select
two examples, label them, and give the suggestion a title. This
approach benefits from having a human select the examples
because humans can select examples with the best and most
visible animations and humans can filter out inappropriate
animations. The criteria for moderating groups are listed in
Table 2. It is also important that a human writes the suggestion
title because the title should motivate the novice programmer
to look at the suggestion. Descriptions of examples need to
describe the output animations, rather than the code itself. A
suggestion title would ideally be something like “Make your
character jump multiple times,” rather than a description of
the move up and move down code blocks. While groups of
examples may be large, the moderator does not necessarily
need to look through all examples in a group if they quickly
find two appropriate examples.

We had a non-author researcher perform the human modera-
tion phase. Our moderator sent 80 of the 158 groups to rule
generation. The excluded groups did not have at least two
examples that fit all of the required criteria in Table 2. Many
of these were due to version issues that caused errors, which
systems should check automatically in the future. Our human
moderation phase ended with 7 suggestions for the loop and 73
suggestions for the parallel execution blocks. The difference
in the number of suggestions is a result of much more frequent
usage of parallel execution in the code repository.

Generate Rules
Our approach generates rules using the object and action types
in Table 1, as initially defined by an expert. The approach
generates rules that find novice code with the same object and
action types as an example group, but that lacks the suggested
concept. For the ‘Make characters move diagonally’ sugges-
tion, the rule looks for code that has a sentient object moving
in multiple directions and does not use a Do together.

In order to generate a rule, the system needs to extract the
following information from a set of examples: 1) the concept



Hand-authored suggestion: “Make....” Semi-Automatically Generated: “Make....” # participants who accessed/ received

objects move in two directions at the same time
a character move diagonally. 8/18
a prop move diagonally. 1/3
camera move diagonally. 1/2

an object bounce multiple times a prop move back and forth mult. times! 1/3
a character jump multiple times. 4/18

objects turn back & forth mult. times a character turn back and forth mult. times. 5/11
characters talk & walk at the same time characters move and say at the same time. 0/3

a character move and talk at the same time. 1/6

objects move together!

mult. things move at the same time. 0/1
mult. characters move at the same time. 7/18
mult. characters move away from something at the same time. 0/1
3 more similar suggestions 0/0

something else happen at the same time as resize a character get bigger or smaller while moving. 0/0
objects flash ... mult. times N/A N/A

joint actions happen mult. times prop’s joints turn back & forth mult. times. 0/0
a character’s joint turn back and forth many times. 0/0

an object disappear at the same time as something else Change multiple things’ visibility at the same time. 0/0
objects do the same thing at the same time! mult. characters act at the same time. 0/0
simultaneous actions happen mult. times! N/A N/A
NA 8 simultaneous turning and moving suggestions: 6/18, 2/8, 2/9, 4/10, 0/3, 0/1, 1/7, 0/0
NA 7 speaking while moving suggestions: 4/7, 0/1, 1/7, 1/4, 1/7, 0/0, 0/0
NA 6 appearance suggestions: 0/3, 0/1, 0/2, 1/3, 1/2, 1/2
NA, NA, NA, NA, NA 15 Simultaneous joint movements suggestions, 9 Jumping and joint movements

suggestions, 7 joints turn while a character moves suggestions, 5 movements while
talking suggestion,4 other misc. suggestions

0/0

Table 3. Left: Hand-authored suggestions. Right: Semi-automatic suggestions and the number of suggestions received and accessed in our study.

being suggested, 2) the number and types of objects to look
for, and 3) the numbers and types of actions for each of the
objects. The system then generates code in Java to fill in the
concept, number and types of objects, and number and types
of actions that the rule should look for. We used the JavaPoet
API to generate Java code for the rules programmatically [19].

We next evaluate the generated suggestions and rules in two
ways: 1) how do they compare to a hand-authored set of
suggestions, and 2) how do young novices interact with them?

EVALUATING SEMI-AUTOMATIC VS. HAND-AUTHORED
We wanted to know how the semi-automatically generated
suggestions compared to a set authored by an expert. We
compared the suggestions generated by our approach to a set of
existing hand-authored suggestions for the Example Guru. We
focused on comparing the output of the approaches rather than
the time and effort of the approaches to get a sense for whether
the algorithms will provide reasonable results. Further work
should likely use these results to fine tune the semi-automatic
approach and then evaluate the savings in expert time.

Comparison Methods
To compare our generated suggestions to a hand-authored
system, we used a set of manually authored suggestions from a
previous study [15]. The hand-authored set of suggestions has
5 suggestions for loop and 6 suggestions for parallel execution,
as shown in Table 3. We consider two suggestions to be
equivalent if they either involve the same types of objects and
actions, or the types of objects or actions in one suggestion
are a more specific version of those in the other suggestion.

Comparison Results
Our semi-automated approach generated more suggestions
overall, including 1) equivalent suggestions for all but two
of the hand-authored suggestions, and 2) an original set of
suggestions. Table 3 shows the hand-authored suggestions in

the left column, matched with the generated suggestions in the
right column. The 61 new suggestions are listed at the bottom.

The generated approach resulted in 19 suggestions equivalent
to the 11 hand-authored suggestions. Our approach often gen-
erated multiple suggestions equivalent to one hand-authored
suggestion, where the generated suggestions are specific to a
certain object type (see Table 3). For the hand-authored ‘make
objects move in two directions at the same time’, our approach
generated three suggestions for a character, a prop, and the
camera. This would require significant extra effort from an
expert to hand author, but very little effort in our approach.
These specific suggestions are highly valuable for novices,
who often need surface-similarity like similar objects to make
connections between abstract examples.

Our semi-automatic approach also generated a new set of sug-
gestions that were not in the hand-authored set. This set con-
tained suggestions about the appearance of characters, props
and scenes, and complex joint actions, as shown in the bottom
of Table 3. The expert likely did not create suggestions about
complex joint animations due to the experience of the target
audience. However, suggestions about simultaneous turning
and moving, as well as simultaneous appearance changes are
applicable to young novices and did end up being relevant to
novices in a user study, as discussed in the next section. Requir-
ing less human effort per suggestion makes it more feasible to
create a larger number of suggestions, some of which may be
highly relevant to small subsets of novice programmers.

USER STUDY
We ran a study to explore how novices received, accessed,
and used semi-automatically generated suggestions. In this
paper, we only discuss and analyze data from participants in a
suggestion condition in a multi-condition study.



Study Protocol
In this paper we analyze data from the first three phases of the
study: 1) baseline open-ended, 2) system familiarization tasks,
and 3) supported open-ended.

Baseline Open-Ended. To measure what novices would ex-
plore without support, all participants worked on an open-
ended animation for the first 15 minutes of the study. Partici-
pants could select one of 9 pre-made scenes to code their own
animation. Participants did not have access to suggestions. For
those with no programming experience, a researcher briefly
demonstrated the mechanics of drag and drop programming.

System Familiarization Tasks. To ensure that participants knew
how to access suggestions and what information the sugges-
tions contained, participants completed two familiarization
tasks. Each task lasted 5 minutes and asked the user to modify
an API method call using a suggestion. A researcher con-
firmed that each participant accessed at least one suggestion
before participants moved on. If participants got stuck, a re-
searcher guided them to the support or helped them complete
the task, as the goal of these tasks was system familiarization,
not evaluation.

Supported Open-Ended. To investigate how participants would
receive, access, and use suggestions during open-ended pro-
gramming, participants had 30 minutes to code with access
to suggestions. A researcher told participants that they were
not required to use suggestions in this phase. Participants first
created an open-ended performance animation and then could
select other scenes to make animations.

Participants
We recruited 24 participants from the Academy of Science of
St. Louis mailing list. We excluded four participants: three
because they had participated in similar studies with our lab
and one due to technical issues that prevented them from
receiving suggestions. We analyzed the data for the remaining
20 participants: 11 males and 9 females who ranged in age
from 8 to 15 (M = 11.2,SD = 1.3).

Study Results
We report the number and types of suggestions participants
received, accessed, and used.

How many suggestions did participants receive?
The number of suggestions participants received tells us
whether the generated suggestions applied to novice programs.
Novices likely will not find all suggestions relevant. In a
30 minute session, we would hope that novice programmers
would at least receive several suggestions. On average, partici-
pants received 9 suggestions (SD =4.5). Participants received
between 1 and 17 suggestions and 80% of participants received
at least 5 suggestions.

Participants received 29 of the 80 available suggestions, as
shown in Table 3. Participants received 11/19 of the sugges-
tions that aligned with hand-authored suggestions. Almost all
(18/20) participants received three of the suggestions: make
a character move diagonally, make a character jump multiple
times, and make multiple characters move at the same time.
Interestingly, these often focused on positional actions. Of

the 61 suggestions generated that did not align with the hand-
authored set, 18 were suggested to at least one participant. Six
of the eighteen were about changing the appearance, seven
were about speech or speech while turning or moving, and
the remaining eight were about combinations of turning and
moving.

The types of suggestions participants did not receive primarily
focused on characters moving their joints. Of the 51 sugges-
tions that no participants received, 34 focused on complex
joint animations. While many programs in our repository
included complex joint movement animations, most novice
programmers in our study did not reach this skill during the
short lab session.

How many suggestions did participants access?
To evaluate whether participants wanted to explore sugges-
tions, we measured how many suggestions novices clicked on
to open. We count an access as the participant clicking to open
a suggestion. We do not count repeat accesses of the same
content. On average, participants accessed 2.6 suggestions
(SD = 2.6). Fifteen participants (75%) accessed at least one
suggestion and thirteen participants (65%) accessed two or
more suggestions. Most participants accessed suggestions for
both concepts: parallel execution and loop. Of participants
who accessed suggestions, 14/15 accessed parallel execution
suggestions and 12/15 accessed loop suggestions.

Of the 29 suggestions received by participants, at least one
participant accessed 20 of them. On average, 23% of par-
ticipants who received a suggestion accessed it (SD = 19%).
Table 3 shows that the percentage of participants accessing
the different suggestions is relatively similar across sugges-
tion types. The suggestions received by higher numbers of
participants commonly have accordingly higher access of sug-
gestions. Most suggestions received by even small numbers
of participants were accessed by at least one participant.

How many new concepts did participants use?
Participants often accessed multiple suggestions for the same
concept, so we report whether participants used a new concept
after accessing any suggestion for that concept. Use of a
suggestion refers to inserting the programming concept from
that suggestion for the first time after accessing it. Ten of
fifteen participants inserted a concept for the first time after
accessing a suggestion for it. On average, participants used
0.8 new concepts from suggestions (SD = .9).

Participants on average inserted 60% of new concepts they ac-
cessed suggestions for (SD= 50%). Of the 14 participants that
accessed suggestions for parallel execution, 10 then used it for
the first time (71%). Participants on average added 3.4 parallel
execution blocks after accessing a suggestion (SD=2). Of the
12 suggestion participants who accessed loop suggestions, 6
added loops for the first time afterward (50%). Suggestion
users on average added 1.8 new loop blocks (SD=1).

The results suggest that participants received sets of rele-
vant suggestions and that participants were able to apply the
suggestions to their animations. In a thirty minute session
where many participants had little or no programming ex-
perience, beginning to use one new abstract programming



concept based on suggestions demonstrates the potential of
semi-automatically generated suggestions.

THREATS TO VALIDITY
The primary threat to validity is our population, a group of
children who primarily have access to a science-focused mail-
ing list. They are likely more interested in programming than
the general population. We also had a small sample size.

DISCUSSION
We discuss how our approach generalizes, the effect of the
code repository, and the potential of this approach to support
personalization.

How our approach generalizes beyond animation
This approach can apply to a variety of programming con-
texts in which programmers are working toward their own
goals and code can be grouped by output. Both conditions
apply in many contexts, such as web, phone application, and
game development. These open-ended contexts have object
and method types that can be grouped. This paper describes
suggestion generation for two early programming concepts.
The same approach could generate suggestions for any other
programming concept block with no extra effort as long as the
repository has enough data to support the approach. Future
work should explore how to generate these types of sugges-
tions for programming skills that span larger code snippets.

Effect of the code repository on suggestion generation
Our approach produces suggestions from a repository of pro-
grams, limiting the generated content by the code in the repos-
itory and risking quality issues. From fewer than 2,000 ex-
amples, our approach generated an impressive number and
quality of suggestions and rules. Many programs in the reposi-
tory contained parallel execution code blocks, but many fewer
included loop or nested blocks. This approach relies on at
least some subset of users to be effectively using programming
constructs. There are often at least a subset of programmers
who do explore ways to learn new programming concepts on
their own. There will likely be at least a small number of
usages of most programming concepts and a small number of
suggestions could encourage use of skills that would feed into
the repository.

We decided to include both novice and expert programs in our
repository for generating suggestions because novices might
create programs more similar to those that the novices would
create in their first 30 minutes. This seems to have succeeded
in generating suggestions with a wide range of complexity.
Furthermore, the moderate phase should prevent low-quality
code or suggestions from being created. When selecting code
snippets from programs, the script could also be designed to
more effectively filter out poor code. Furthermore, depending
on the type of repository, there might be ways of measuring
expertise that could be used to give higher priority to certain
examples or suggestions. A few possibilities are the frequency
of use of certain programming constructs and the number of
programs or code contributions a user has made.

Personalization
Automated approaches for creating learning material means
that there is more potential for personalization. Our approach

generated many suggestions for each concept. Some of the
suggestions were also highly similar to each other. This could
enable systems to further personalize the suggestions provided
based on a broader set of information about the novice pro-
grammer. In this study, some participants paid less attention to
the suggestions and some had more trouble understanding the
suggestions. Personalization might enable a system to better
support a broader range of children. This would be hard to do
using expert-created content because the expert would need
to create much more content and determine how it applies to
different types of children.

CONCLUSION
Existing systems require significant human effort to gener-
ate support for programmers. There is a growing number of
systems for children to begin learning programming. With
each of these new systems comes the need for more documen-
tation and support, which is often static and outside of the
novice’s context. Our approach could ease the human costs
associated with creating and updating help resources. This
has the potential to help children overcome plateaus when
coding in contexts without tasks, ideally leading to learning
and continued interest in programming.
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