
Towards Generalizing Expert Programmers’

Suggestions for Novice Programmers

Michelle Ichinco, Aaron Zemach, Caitlin Kelleher

Dept. of Computer Science and Engineering

Washington University in St. Louis

St. Louis, MO, USA

michelle.ichinco@wustl.edu, zemacha@seas.wustl.edu, ckelleher@cse.wustl.edu

Abstract—Novice programmers may lack the experience to

recognize opportunities to either improve their code or apply

unfamiliar programming constructs. Yet, these opportunities are

often clear to an experienced programmer. In this paper, we

describe an exploratory study investigating 1) the potential value

of the suggestions experienced programmers make to novice

programmers and 2) the ways experienced programmers

envision identifying other programs that would benefit from the

same suggestion. The results of our study suggest that

experienced programmers make suggestions that can introduce

new programming constructs to novice programmers. The

participants in our study most commonly made suggestions that

improve the code quality of novice programs, rather than

changing their output. Furthermore, experienced programmers

could often state a simple heuristic rule to use in identifying other

novice programs that would benefit from their suggestion.

Participants were able to author the rules in pseudocode, mostly

using combinations of iteration and comparison to find patterns

of problematic code. However, based on a test implementation of

a selected set of rules for these suggestions, we conclude that

support for improving rules through review and community

input will be valuable.

Keywords— novice programming; independent learning; static

code analysis; crowdsourcing

I. INTRODUCTION

Estimates predict that low enrollment in computing degree
programs will leave almost 40% of American computing jobs
unfulfilled in 2018 [1], with a similar outlook in Europe [2]
and the Asia-Pacific region [3]. Contributing to this problem,
many students opt out of studying computer science long
before they reach college [4]. Yet, between 2005 and 2009, the
number of secondary schools offering introductory and AP
computer science classes decreased by 17% and 35%,
respectively [5]. These numbers are unlikely to improve in the
near future, due to a lack of certified computer science teachers
and the absence of computer science in many state curriculum
standards [5]. Currently, there are three common approaches to
learning programming without formal computer science
education: after-school programming classes, reusing code
from the internet, and free online programming classes.

Programming opportunities outside of schools, like Scratch
workshops in the Computer Clubhouse [6], are one way for
students to gain exposure to programming. Yet, camps and

workshops like this are extremely limited and require a time
commitment from in-person teaching support to provide the
necessary feedback to students.

Without formal education, novice programmers often reuse
code examples from the internet to fill in the gaps. However,
end-user non-programmers often do not understand example
code [7], which can lead to incorrect code usages and errors.
Further, novice programmers cannot seek out techniques that
they do not know exist. Therefore, learning programming from
reusing code cannot replace the guidance and individualized
feedback students would likely receive in school.

Novice programmers who do not have access to
programming classes in school can also take free online
computer science courses [8], [9]. Yet, retention rates for
online classes are low compared to US colleges [10], indicating
that self-motivation is necessary to take these classes.

A less readily available alternative to learning
programming in school is for a novice programmer to get tips
from an expert programmer they already know, such as a friend
or family member. Imagine two hypothetical middle school
students named Beth and Carl, who are learning programming
independently and do not have access to programming classes.

Beth is programming a synchronized swimming animation
and finds a backflip procedure online. She reuses it in her
program, but the backflip procedure is specific to a certain
object. Not realizing she can generalize the existing method,
she recreates an identical backflip method for each of the
synchronized swimmers. Carl, on the other hand, shows his
uncle, who is a software engineer, a program where he has
created an identical swim method for each of five fish. Carl’s
uncle suggests that he generalize the method for all fish.

Currently, there is no way for this suggestion to reach Beth.
If we can capture the suggestion and determine that Beth’s
program would also benefit from it, Beth might learn how to
generalize her backflip method.

We ran an exploratory study to investigate crowdsourcing
expert programmer suggestions to enable mentoring novice
programmers at a large scale. We hypothesize that expert
programmers can make suggestions to novice programmers’
code and write rules for those suggestions. We define a rule as
a simple program that evaluates whether a novice program

This material is based upon work supported by the National Science
Foundation under Grant No. 1054587.

should receive a suggestion. If possible, this would enable a
large population of novice programmers to benefit from a
relatively small number of suggestions. In this study, we asked
participants to suggest an improvement for a novice program
and author a rule to identify more general patterns in code that
indicate that their suggestion would be appropriate. This paper
addresses the following questions, 1) do participants make
suggestions that have the potential to teach a novice how to
improve their program, 2) what does the rule pseudocode tell
us about how to design support for authoring rules, and 3) in
practice, how well do rules generalize whether a program is a
potential “target,” meaning it should receive the suggestion?

II. RELATED WORK

This study explores whether expert programmers can
identify problematic code, provide suggestions to improve
novice code, and then generalize those suggestions. While no
one has addressed this question directly, our work builds on a
variety of research areas involving code analysis, which define
and evaluate either code correctness or code quality.

A. Code Correctness

Researchers have made progress on evaluating code
correctness in the following areas: automatic grading systems,
finding bugs and errors in professional code automatically, and
in novice code using crowdsourcing.

Automated tests that check code correctness in
programming assignments provide quick feedback to a large
number of students and allow professors to assign more
assignments. A variety of automated grading systems [11]–[17]
allow teachers to specify assignments and tests that evaluate
the correctness of code output. While these systems require
assignments with defined answers, independent learners using
novice programming systems often work on open ended
programs that do not have right or wrong answers.

Evaluating source code can locate bugs and errors, which
often affect whether code executes correctly. PREfix and
PREfast are systems that successfully determine the density of
defects by analyzing code [18]. Static code analysis can also
find issues in large-scale multi-threaded programs [19] and
detect security vulnerabilities [20], [21]. However, novice
programmers, focused on learning programming constructs, are
mainly shielded from these complex bugs.

Studies have used crowdsourcing to assist new
programmers in understanding compilation errors and bugs.
HelpMeOut, BlueFix and Crowd::Debug [22]–[24] utilize
example code from a database of users’ error fixes, in
conjunction with expert explanations, to assist novice
programmers in understanding and fixing bugs. Our study
extends crowdsourcing and expert programmer advice to
present novice programmers with new programming concepts.

B. Code Quality

Though Anderson and Shneiderman claim that peer review
is an appropriate method for evaluating code quality [25],
three types of systems define and assess code quality more
formally: tools for code quality assessment, a subset of
automatic grading systems, and code smell detection methods.

A number of tools allow programmers to check the quality
and style of their code: PMD, Klokwork, SourceMonitor, QJ-
Pro, and StyleCop [26]–[30]. These tools provide standard
metrics and allow customization of metrics, but are aimed at
professional programmers and do not have support for
suggesting new programming concepts or skills.

A number of automatic grading systems measure the
quality of student code using standards and structural
properties. Some systems use metrics as code quality measures
for student assignments, like the ISO/IEC 9126 standard [31],
[32] or Berry and Meekings’ style metrics [33], [34]. Other
automatic grading systems consider the structure of code. For
example, one framework employs cyclomatic complexity [35],
[36], while another study uses LOGISCOPE to find knots [37].
Cyclomatic complexity and knots find problematic code by
looking at the paths through a program. These evaluation
techniques focus on complex structural and style issues or
aspects of code such as whitespace, all of which novices can
often ignore while learning basic programming concepts.

Fowler and Beck [38] developed categorizations and
definitions of “code smells.” Code smells are patterns of code,
such as long methods or duplicated code, which may indicate a
problem. Based on these definitions, a body of research has
investigated humans and metrics as detectors of code smells.
Several studies [39]–[41] explore human evaluations of code
smells, finding low agreement for detection of complex code
smells. Mantyla, Vanhanen and Lassenius developed a
taxonomy [42] to enable better understanding of code smells
for human detection. They found that their taxonomy aligns
with correlations software developers noted between code
smells. DECOR and “detection strategies” [43], [44] enable
humans to operationalize code smells using software metrics,
while another set of systems [45]–[47] use metrics to
automatically detect code smells [38]. Based on code smells,
Cunha, Fernandes, Ribeiro and Saraiva identified smells in
spreadsheet code and created a tool to find these smells [48].
Similarly, indications of issues in novice programs will be
different from those in software systems. Yet, work on code
smells supports the idea that expert programmers may be able
to specify opportunities for improvement in novice code.

Current systems test correctness of student code, find bugs
and errors, check quality of student and professional
programmer code, and find code smells. We address the
feasibility of expert programmers making suggestions and then
generalizing which programs should receive the suggestions.

III. MENTORING IN LOOKING GLASS

Looking Glass [49] is a drag and drop integrated
development environment (IDE) designed to help middle
school students learn to program independent of formal
education. We chose to explore mentoring in Looking Glass
partially because of its integration with an online community,
where users can upload their programs. One way for experts to
mentor novices is to open a program from the online
community, edit it, and then re-submit it, which can be easily
streamlined in Looking Glass.

 To create a program in Looking Glass, users first make a
scene and then drag and drop code tiles to create an animation.

The drag and drop tiles prevent users from making syntax
errors. Looking Glass has a set of standard methods for
characters, such as walk, say, and move, as well as a set of
programming constructs, like the DoTogether, DoInOrder,
If/Else and CountLoop. Users can also create custom methods
with sequences of methods and programming constructs.

In Looking Glass, the realization of a mentoring system
will involve an interface for mentors to make suggestions and
author rules. A suggestion is a code improvement a mentor
makes to a novice’s program, while a rule is a short program
that generalizes whether the suggestion is likely to improve
another program. One aim of this study is to inform the design
of an Application Programming Interface (API) that will
enable experts to author rules without deep knowledge of how
Looking Glass stores programs.

IV. METHODS

We are interested in the suggestions expert programmers
make, how expert programmers write rule pseudocode, and
whether the rules find appropriate target programs. The study
involved an introduction to Looking Glass, followed by four
rule authoring tasks, one in which the participant was asked to
make their own suggestion.

A. Study Procedures

This study collects two kinds of information: the types of
suggestions programming experts make and rule pseudocode
that captures how programming experts envision finding target
programs. Due to time constraints, we asked participants to
make one suggestion and author a rule that specifies when to
offer that suggestion, and then write three additional rules
based on premade suggestions. The study has three parts: an
introduction to Looking Glass, a “Suggestion/Rule Pair” task,
and three “Rule Authoring with Premade Suggestion” tasks.
We randomly assigned each participant an example program
for each task, such that each participant saw one example
program from each of four skill groups in Fig. 1. The four
selected skill levels range from beginner to intermediate, which
we describe in more detail in the Materials section. Due to a
lack of student programs in the advanced skill group, we did
not include advanced example programs in this study.

1) Looking Glass Introduction
To enable participants to make a suggestion by editing a

program, we introduced participants to the components of the
Looking Glass IDE. After demonstrating a completed program
created by a researcher, we asked participants to create a
simple program to familiarize themselves with Looking Glass.

2) Suggestion/Rule Pair Task
To investigate the types of suggestions domain experts

make for novice programs and how they write the
corresponding rules, we asked participants to create a
suggestion and then author a rule. We first played an example
program animation in Looking Glass and provided the
participant with a skill group diagram (Fig. 1) to guide them
toward suggestions at an appropriate skill level. We then asked
participants to make a suggestion by editing the program.

To explore how expert programmers author rules, we
provided participants with a rule-authoring template, which is a

Word document with instructions for the task and space for
typing the rule. We asked participants to describe the rule in
English, explaining what pattern of code indicates that their
suggestion might be useful. We then asked participants to write
the rule as a program in pseudocode that, when run on any
novice program, determines whether the novice program would
benefit from the suggestion they created. Similar to the natural
programming approach [50], we asked participants to use their
own vocabulary and format and did not provide any
information about terms or structure that they should use.

3) Rule Authoring with Premade Suggestion Task
The purpose of the rule authoring tasks with premade

suggestions was to explore how participants wrote rules in
pseudocode, in order to inform the design of an API. We asked
participants to author three rules based on premade suggestions
designed by the experimenters. For these tasks, we showed the
participant an example program beside a premade suggestion
and asked them to author a rule, as in the Suggestion/Rule Pair
task, that finds target programs for the provided suggestion.

B. Participants

This study involved 21 participants, five of whom were
female, ranging in age from 19 to 68. We recruited participants
through the Academy of Science of St. Louis mailing list
because these members represent the type of programming
experts who may be interested in mentoring students in the
future. Participants’ programming backgrounds range from
being self-taught to having a Ph.D in Computer Science. Most
participants listed their occupation as software developer,
software engineer or programmer. Fifteen participants
described themselves as an expert in at least one programming
language and all had experience programming.

V. MATERIALS

We created the example programs, premade suggestions,
skillset diagrams, and the rule-authoring template used in this
study to simulate the experience of a mentor.

A. Example Programs

Participants made suggestions and wrote rules for “example
programs,” which are slight alterations of Alice programs [51]
and Looking Glass programs created in a 2010 study. In the
2010 Looking Glass study, participants had never programmed
before. Alice is a sister project of Looking Glass that has

Fig. 1. Skill group diagram

college-aged users with more advanced skills. The programs
were selected to represent a variety of skill levels and such that
we could point to at least one potential suggestion per program,
but there were often many. The example programs maintain the
same structure and content as student programs, with changes
mainly in the characters and props. We created example
programs due to a lack of student programs compatible with
the current system. The example programs also remove
information that might identify the original authors.

B. Premade Suggestions

Each example program has an associated premade
suggestion, created by the experimenters and used in the “Rule
with Premade Suggestion” tasks. Suggestions were one of two
types: code-based or animation-based. Code changes improve
the coding style of a program, while animation changes
improve the output of the program. An example premade
suggestion for an animation change is “A more complex
animation with body movements was added where Tami
previously danced. She now moves her left leg and arms to be
in a dancing position before she turns, instead of just spinning
in a standing pose.” An example premade suggestion for a code
change is “A list of characters all doing the same action was
replaced with a ForEach loop with the array of characters.” To
show a participant a premade suggestion, we provided them
with a sheet of paper that contained screenshots of the original
program and the premade suggestion. The English descriptions
of the suggestions were printed above the screenshots.

C. Skill group diagrams

To help participants make an appropriate suggestion, we
provided them with a skill group diagram like Fig. 1. These
skill groups are based on a hierarchy of novice programming
skills currently being developed, similar to groupings used by
the Computer Science Teachers Association [52]. For
participants, the diagrams indicated which of these skills the
novice programmer likely already knows, which might be
appropriate to present next, and which might be too advanced,
based on the structures present in the example program.

D. Rule-authoring template

We chose to use a Word document for rule authoring to
minimize the influence of the IDE on the participants’ coding
style choices. The document contains instructions asking
participants to write the rule in a sentence and then in
pseudocode, such that it returns “True” if the rule has found a
target program and otherwise returns “False.”

VI. ANALYSIS AND RESULTS

The results of this study answer three questions: 1) what
types of suggestions do programmers make, 2) what does the
pseudocode tell us about designing a tool for authoring rules,
and 3) what do the target programs tell us about the rules?

A. Suggestions

To explore the types of suggestions participants made, we
used a grounded theory approach [53], which is an iterative
process of labeling possibly important features of the data to
develop categories and theories. We labeled suggestions based
on the suggestion as a whole. This process resulted in
hierarchies of categories for Suggestion Type and Suggestion

Novelty, based on common labels and relationships between
labels. The Suggestion Types group suggestions by the concept
or idea the improvement presents. The Suggestion Novelty
categories consider whether the suggestion utilizes new
concepts. For categorization purposes, new concepts are
programming constructs, structures, or methods that the
example program does not contain. After developing the
categories using grounded theory, two researchers then
individually selected categories for the 21 suggestions. This set
of suggestions resulted from each of the 21 participants
creating a suggestion in the “Suggestion/Rule Pair” task. The
categorizations had inter-rater reliabilities of 95% for
Suggestion Types and 86% for Suggestion Novelty categories.

1) Suggestion Type
The data labeling and categorization process resulted in two

major types of suggestions: code changes and animation
changes, as shown in Fig. 2. In a code change, the participant
modified the style of the program’s code, such as adding a
variable when a value is used multiple times for the same
purpose. In animation changes, participants modified the
animation output of the program, such as creating a new
method fallDown where the character flails and falls
realistically to replace a method that makes a character turn
backward without bending any joints. Of 21 participants, 16
improved the code, 4 modified the animation, and 1 changed
both the code and the animation. At the most detailed level,
there are eight suggestion types with no more than 20% of
suggestions in any one category. Further, the majority of
suggestions were different than those made by the researcher
for the “premade suggestions,” indicating that the example
programs had a wide variety of possible improvements.

 As seen in Fig. 2, two common code change types are
creating a new method (4) and restructuring repeated code (4).
One new method suggestion is for a program where a man
pushes another man into the ocean. The suggestion extracts the
animation to a custom method, which makes the action more
easily reusable. In another example program, a set of kids each
turn to face the camera sequentially. The suggestion, which
restructures repeated code, replaces the list of repeated
statements with a ForEach loop, improving the code style and
introducing or reinforcing ForEach loops.

Six participants improved the usability of code by
generalizing a method (3) or returning the animation to a
default state (3). Generalizing a method can be, for example,

Fig. 2. Suggestion type categories

adding parameters or making a method accessible to a class of
objects, rather than a single character. Returning code to a
default state involves bringing a character to a position where
the animation can continue or is more easily reusable. For
instance, one example program has a dancer jump into the air
and the suggestion returns the dancer to the ground.

Although we encouraged both code and animation changes,
most participants made code changes, for several reasons: lack
of familiarity with Looking Glass, fear of changing a child’s
creation, and difficulty generalizing animation changes. Since
participants only had a short introduction to Looking Glass,
changing programming constructs or restructuring code was
easier than creating animations. Several participants
commented that they did not want to change the animation
because they were unsure of the original intentions. Other
participants considered changing the animations in a program,
but stated that they did not believe it would apply to other
programs. These results suggest that experts will be more
likely to improve novice code than animations.

2) Suggestion Novelty
Thirteen of the 21 suggestions utilized explicitly new

concepts or constructs, while 10 reinforced constructs or
concepts already present in the example program. The majority
of suggestions are either in the category “Method creation or
abstraction” (9) or “Added method calls” (6). In the suggestion
novelty classification in Fig. 3, a method call refers to a
provided method, like walk or move and programming
constructs refer to loops and conditional logic. Method creation
involves restructuring a sequence of methods into a custom
method. Data storage refers to variables and parameters.

 Both new concepts and reinforcement can be valuable
feedback for novice programmers, as using a concept once
does not imply mastery. Yet, it may be useful for the system to
keep track of the suggestions given to users in order to prevent
overwhelming repetition of suggestions. Further, when a
suggestion does not introduce something new, providing an
explanation may help students understand why a suggestion
will improve their code and what they might learn from it.

B. Rule Pseudocode

We analyzed the rule pseudocode to inform the design of
an API for rule authoring. To enable any programming expert
to write rules, the API must provide mentors with access to the
information in the novice programs that they need. The rules’
pseudocode provides insight into the types of functionality
domain experts expect to have while writing rules.

The 21 participants wrote 72 rules, averaging 3.5 of 4
completed tasks, due to time. This set of rules results from each
participant completing a “Suggestion/Rule Pair” task and up to
three “Rule Authoring with Premade Suggestion” tasks. We
analyzed pseudocode with a similar grounded theory approach
as used for Suggestion Type. For pseudocode, we labeled each
line of code and categorized them individually. The rules
contained 287 total lines, not counting lines that were braces or
the required return statements. On average, rules contain four
lines of code, with a standard deviation of 1.8. Consistent with
the method for categorizing suggestions, two researchers
independently categorized pseudocode lines, with a 94% inter-
rater agreement rate. We will not discuss the 6% of disputed
lines, as they fit into multiple categories or were ambiguous.
The remaining 94% of lines fall into three overarching
categories: iteration, comparison, and “other.”

Most of the 24% of pseudocode lines identified as neither
iteration nor comparison were either matching functions,
attempts to access dynamic information, or count functions. A
few participants created template matching functions that
defined a set of constraints and then checked whether any lines
met those constraints. Other participants checked information
only available at runtime, such as the location of characters.
However, rules with access only to the static code cannot check
runtime information. Several participants used functions to
count the number of times a line occurs. Because participants
rarely used these types of functions or we deemed the functions
not viable, we focus on iteration and comparison.

 The remaining 70% of pseudocode lines are either iteration
or comparison, indicating that the API should focus on
allowing mentors to iterate through programs and perform
comparisons to find code patterns. Fig. 4 shows an example of
a rule that has the typical pseudocode structure: line 1 iterates
through each of the methods and line 2 compares the name of
the current method call to the name of the next method called.

1) Iteration
 The iteration lines fall into six categories: three ways of

iterating through lines of code, and iterating through
parameters, sets of objects, and programming constructs. The
number of pseudocode lines for each of the categories is shown
in Fig. 5. When iterating through lines of code, some
participants assumed access to a set of lines, in a ForEach(line)
style, for the whole program or within a certain scope.
Surprisingly, a number of participants parsed the program as
strings in a While!(EndofDocument) style. However, it will be
less work for mentors to iterate through elements in the
program than to write complex regular expressions to parse
strings. By far, the most used iteration style was through each
line in the program, but providing support for checking
conditions in a certain construct or in a custom method is also
likely to be useful.

2) Comparison
Participants often used comparison to determine whether a

line or group of lines contain a certain issue. Comparisons fell

Fig. 3. Suggestion novelty categories

1: foreach(allMethods as k => method)

2: if(method->name == allMethods[k +1]->name)

3: return true;

Fig. 4. Example rule pseudocode

into three high-level groups: comparison of multiple lines of
code, whole lines or methods, and part of a line or method, as
shown in Fig. 6. The differences result from participants either
envisioning the code as a string or as a structure. Eight
participants treated programs as strings, parsing and pattern
matching with functions like line.contains(“methodName”).
The other 13 participants assumed that programs have a
structure that they could query for information, such as
accessing the method name with a function like
line.getName(). These categories imply that the API design
should focus on accessing parts of a method and enabling
comparison of entire lines of code. Only 5 pseudocode lines
compared multiple lines of code, but the amount of code
required to accomplish this manually suggests that API support
would be useful.

We used the pseudocode categories to develop a
preliminary API, which enables iterating through lines of code,
iterating through programming constructs, comparing
consecutive lines of code, comparing multiple lines of code,
comparing non-consecutive lines of code, checking values of
parameters, and comparing parameters of multiple methods.

C. Rule Implementation

To evaluate whether rules are likely to work in practice, we
implemented each of the rules from the “Suggestion/Rule Pair”
task using the preliminary API. We chose to implement these
rules because they are based on suggestions participants’ made,
rather than premade suggestions. Two pairs had identical
implementations, so we tested the remaining 19 rules.

We tested each rule on the 165 programs currently
uploaded to the Looking Glass Community. We will refer to
the Looking Glass Community programs as the “mixed group,”
since Looking Glass Lab members, ranging from college
sophomores to a professor, contributed 92 of these programs.
We also tested the rules on 55 programs created by middle
school children, the “novice group,” in an unrelated 2013
study. The novice group did not receive instruction on how to

program. Although this distribution of test programs is not
ideal, program authors do range from novice to advanced.

 Running each rule identifies the target programs that could
benefit from the associated suggestion. Table 1 summarizes the
rules, grouped by quality, and reports the percentages of
programs in the mixed and novice groups that fit the rules. We
initially hypothesized that these percentages might indicate
whether a rule is too general or too specific. In practice, other,
unrelated factors such as skill level of the user, affect the
percentage, making it only a weak indicator of rule quality.
Our analysis suggests that rules range in quality from unfixable
to immediately applicable. Thus, we focus our discussion of
rule quality on the following four types of rules: Unfixable
(UF), Bad Code (BC), Fixable Code (FC) or Good Code (GC).

1) Unfixable Code (3 rules)
Unfixable rules have issues such as presenting suggestions

that are either a poor example or irrelevant to the user’s
program. For example, UF2 looks for sequences of say
statements and creates a new method, passing in the text strings
as parameters. In an object-based context, this presents an
unrepresentative example of using a new method. In most
cases, Looking Glass programmers use new methods to create
and name a cohesive set of actions for a character.

2) Bad Code (2 rules)
Based on their English descriptions, the two rules in this

category are inspired by valid observations. However, the
pseudocode rules do not match these descriptions. BC1, for
example, intended to look for cases in which a character
performs two actions that can be condensed into a single
action. For example, a new user might not realize that
parameter values can be modified and use a string of move
statements to position a character, rather than changing the
distance moved. In practice, the rule searches for a sequence of
two identical lines. While two move forward statements can be
easily combined, not all actions have that characteristic.

3) Fixable Code (6 rules)
Fixable code rules are very close to making appropriate

suggestions, but the code neglects to check one or more
conditions that could improve their results. To get a sense for
how these rules might perform if corrected, we also created
fixed versions of them. For example, FC1 suggested creating a
new method if a character performs 3 actions in a row. A
sequence of actions by the same character is often a reasonable
place to suggest creating a new method. We modified this rule
to check for at 6 actions instead of 3 and to ensure that those
actions are not already in a custom method. This dramatically
reduced the percentages of target programs for the mixed group
from 68 to 8 and for the novice group from 70 to 0. In Table 1,
we report the original matching percentage followed by the
fixed matching percentage for the mixed and novice groups.

4) Good Code (8 rules)
Eight of the rules present suggestions to an appropriate set

of programs with no improvement necessary. Some of the rules
with good code are straightforward programming concepts. For
example, GC2 looks for unnecessary DoTogether statements,
those that contain fewer than two statements. GC3 replaces
repeated actions by a set of characters with a ForEach loop.

Fig. 5. Iteration style categories

Fig. 6. Comparison Style categories

Other rules in this category were less straightforward. GC1
looks for a sequence of color changes. Initially, we were
skeptical that this would be generally useful. However, the
cases in which programs repeatedly change colors are mostly
implementing a flash behavior. While this suggestion may not
be offered with great frequency (only 2% of programs
matched), it is likely to be a good suggestion when it is offered.

VII. CONCLUSIONS AND FUTURE WORK

Overall, nearly three quarters of the rules experts wrote
were either strong or readily fixable, which provides some
support for the approach of crowdsourcing suggestion-based
help for novice programmers. In fact, our study may
underestimate the likely percentage of good and readily fixable
rules. Participants wrote rules in a Word document to prevent
any influence of the IDE on their pseudocode. However, this
also removes feedback participants would normally receive
when programming. We intend to develop an interface and API
to enable rule authoring, editing and testing within Looking
Glass. We expect that the ability to test rules prior to
submission could substantially improve their quality.

In addition to the lack of feedback, we hypothesize that
varying experience could also explain some of the variety in
rule quality. Our study attracted an enthusiastic response from
computing professionals with a wide range of experience: in
addition to software engineers with decades of experience,
participants included students, self-taught web developers, and
people who used to program but do not currently. However,
there appeared to be little relationship between rule quality and
experience. This suggests that there will always be variance in
rule quality and that we will need to design crowdsourcing
approaches with this in mind. One can imagine a collaboration

system where a rule requires vetting before “going live.” The
system would not recommend suggestions to novices until a
number of other mentors certify that the rule is appropriate.
Mentors could either edit inappropriate rules or vote them
Unfixable, in which case they would eventually disappear from
the system. In future work, we plan to test the effectiveness of
this type of crowdsourced rule evaluation system.

Finally, the nature of the rules implies that we will need to
use care when offering suggestions to novice programmers.
While some rules identify matches with 100% certainty, others
do not. DoTogethers with fewer than two statements (i.e. GC2)
can always be simplified. In contrast, GC4 is inspired by the
observation that methods called repeatedly should be free of
side effects, such as ending in a location different from the start
position. This rule finds methods called multiple times that
contain move animations. While this may be appropriate for
certain programs, some methods appropriately need the ending
position to differ from the starting position. Additionally, this
rule looks only for a move method, which is not a perfect signal
that a method has side effects. Consequently, systems that offer
suggestions based on mentor rules will need to be designed
such that suggestions are unobtrusive and are not offered
endlessly. The development of this suggestion system will also
enable evaluation of whether rules and suggestions actually
teach novice programmers new programming concepts.

REFERENCES

[1] National Center for Women & Information Technology, “Computing

Education and Future Jobs: A Look at National, State &
Congressional District Data,” Dec. 2011.

[2] R. Schneiderman, “Competition Heats Up To Fill European Tech

Jobs,” 2012. [Online]. Available:

TABLE 1 RULES, RULE ISSUES, AND PERCENTAGES OF PROGRAMS RECEIVING SUGGESTIONS FOR PARTICIPANT RULES

Rule Quality Short Description of Rule Intent Fig.2 Category Rule Quality Issue Mixed (%) Novice (%)

Un-fixable

Code
UF1. Program contains a reversible action Default Pos. Too Aggressive 83% 71%

UF2. Find a sequence of single character say statements New Method Poor Example 26% 36%

UF3. DoTogether contains several items New Method Poor Example 63% 9%

Bad Code BC1. Two consecutive identical lines Remove Rep. Idea-Code Mismatch 11% 0%

BC2. Single character performs an action multiple times Improve Action Idea-Code Mismatch 82% 95%

Fixable Code FC1. Character performs three actions in a row New Method Too Aggressive/Incomplete 68%  8% 70%  0%

FC2. My First Method has DoInOrder child Remove Unnec. Incomplete 8%  13% 0%  0%

FC3. Object moves more than once in sequence Remove Rep Incomplete 27%  2% 7%  2%

FC4. Say statement contains more than eight words Dialog Incomplete 46%  39% 56%  9%

FC5. Custom method for a specific character Generalize Incomplete 36% 33% 7%  7%

FC6. Repeated use of same duration value in a method Local Var. Incomplete 64%  64% 18%15%

Good Code GC1. Sequence of color changes New Method N/A 2% 2%

GC2. DoTogether with fewer than two statements Remove Unnec. N/A 7% 4%

GC3. Characters perform same statement in sequence Remove Rep. N/A 16% 15%

GC4. Custom method called more than once contains move Default Pos. N/A 14% 0%

GC5. A character turns backward ¼ Improve Action N/A 0% 0%

GC6. Program contains moveTo statement Improve Action N/A 21% 40%

GC7. Something moves up, never moves down Default Pos. N/A 26% 6%

GC8. Repeated use of a property value Generalize N/A 41% 0%

http://careers.ieee.org/article/European_Job_Outlook_0312.php. [24-

Feb-2013].
[3] R. Schneiderman, “Economic Strains Are Having Little Impact On

Tech Job Opportunities In The Asia-Pacific,” IEEE JobSite, 2012.

[Online]. Available:
http://careers.ieee.org/article/asiapacific_0812.php. [24-Feb-2013].

[4] J. H. Pryor, S. Hurtado, L. DeAngelo, L. P. Blake, and S. Tran, The

American freshman: national norms, fall 2009. Amer Coun On Educ.,
2005.

[5] “Running on Empty: The Failure to Teach K-12 Computer Science in

the Digital Age,” Assoc. for computing Machinery and The Comput.
Sci. Teachers Assoc., 2010.

[6] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk,

“Programming by choice: urban youth learning programming with
scratch,” in Proc. 39th SIGCSE technical symp.on Computer sci.

educ., New York, NY, USA, 2008, pp. 367–371.

[7] P. Gross and C. Kelleher, “Non-programmers identifying functionality
in unfamiliar code: strategies and barriers,” Journal of Visual

Languages & Computing, vol. 21, no. 5, pp. 263–276, 2010.

[8] “Coursera,” Coursera. [Online]. Available: https://www.coursera.org/.
[09-Mar-2013].

[9] “Khan Academy,” Khan Academy. [Online]. Available:

http://www.khanacademy.org. [Accessed: 09-Mar-2013].
[10] J. Daniel, “Making Sense of MOOCs: Musings in a Maze of Myth,

Paradox and Possibility,” J. Interactive Media in Education, vol. 3,

no. 0, Dec. 2012.
[11] S. H. Edwards and M. A. Perez-Quinones, “Web-CAT: automatically

grading programming assignments,” in Proc. 13th annual conf. on
ITiCSE, New York, NY, USA, 2008, pp. 328–328.

[12] M. J. Hull, D. Powell, and E. Klein, “Infandango: automated grading

for student programming,” in Proc. 16th annu. joint conf. ITiCSE,
New York, NY, USA, 2011, pp. 330–330.

[13] D. Arnow and O. Barshay, “WebToTeach: An interactive focused

programming exercise system,” in Frontiers in Education Conf.
FIE’99. 29th Annual, 1999, vol. 1, pp. 12A9–39.

[14] X. Fu, B. Peltsverger, K. Qian, L. Tao, and J. Liu, “APOGEE:

automated project grading and instant feedback system for web based
computing,” SIGCSE Bull., vol. 40, no. 1, pp. 77–81, Mar. 2008.

[15] E. L. Jones, “Grading student programs-a software testing approach,”

J. of Computing Sci. in Colleges, vol. 16, no. 2, pp. 185–192, 2001.
[16] M. Blumenstein, S. Green, A. Nguyen, and V. Muthukkumarasamy,

“An experimental analysis of GAME: a generic automated marking

environment,” SIGCSE Bull., vol. 36, no. 3, pp. 67–71, Jun. 2004.
[17] R. Saikkonen, L. Malmi, and A. Korhonen, “Fully automatic

assessment of programming exercises,” in Proc. 6th ann. conf. on

ITiCSE, New York, NY, USA, 2001, pp. 133–136.
[18] N. Nagappan and T. Ball, “Static analysis tools as early indicators of

pre-release defect density,” in Proc. 27th int. conf. on Software eng.,

2005, pp. 580–586.
[19] C. Artho and A. Biere, “Applying static analysis to large-scale, multi-

threaded Java programs,” in Software Engineering. Proc. Australian,

2001, pp. 68–75.
[20] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool

for detecting web application vulnerabilities,” in Security and Privacy,

IEEE Symp. on, 2006, p. 6–pp.
[21] M. S. Ware and C. J. Fox, “Securing Java code: heuristics and an

evaluation of static analysis tools,” in Proc. workshop on Static

analysis, New York, NY, USA, 2008, pp. 12–21.
[22] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What

would other programmers do: suggesting solutions to error messages,”

in Proc. 28th int. conf. on Human factors in computing systems, New
York, NY, USA, 2010, pp. 1019–1028.

[23] C. Watson, F. Li, and J. Godwin, “BlueFix: Using Crowd-Sourced

Feedback to Support Programming Students in Error Diagnosis and
Repair,” Advances in Web-Based Learning-ICWL, pp. 228–239, 2012.

[24] D. Mujumdar, M. Kallenbach, B. Liu, and B. Hartmann,

“Crowdsourcing suggestions to programming problems for dynamic
web development languages,” in Proc. 2011 annu. conf. extended

abstracts on Human factors in comput. systems, 2011, pp. 1525–1530.

[25] N. Anderson and B. Shneiderman, “Use of peer ratings in evaluating
computer program quality,” in Proc. 15th annu.SIGCPR conf., New

York, NY, USA, 1977, pp. 218–226.

[26] “PMD.” [Online]. Available: http://pmd.sourceforge.net/. [15-Mar-

2013].
[27] “Klocwork.” [Online]. Available: http://www.klocwork.com/index-

v3.php. [Accessed: 16-Jan-2013].

[28] “SourceMonitor.” [Online]. Available:
http://www.campwoodsw.com/sourcemonitor.html. [21-Feb-2013].

[29] “Code Analyzer for Java.” [Online]. Available:

http://qjpro.sourceforge.net/index.html. [Accessed: 21-Feb-2013].
[30] “StyleCop.” [Online]. Available: http://stylecop.codeplex.com/.

[Accessed: 21-Feb-2013].

[31] D. M. Breuker, J. Derriks, and J. Brunekreef, “Measuring static
quality of student code,” in Proc. 16th annu. joint conf. on ITiCSE,

New York, NY, USA, 2011, pp. 13–17.

[32] ISO/IEC 9126-1 2001, “Software Engineering- Product Quality – Part
1: Quality Model.” Geneva, 2001.

[33] D. Jackson and M. Usher, “Grading student programs using

ASSYST,” in Proc. 28th SIGCSE technical symp. on Computer
science education, New York, NY, USA, 1997, pp. 335–339.

[34] R. E. Berry and B. A. E. Meekings, “A style analysis of C programs,”

Commun. ACM, vol. 28, no. 1, pp. 80–88, Jan. 1985.
[35] N. Truong, P. Roe, and P. Bancroft, “Static analysis of students’ Java

programs,” in Proc. 6th Australasian Conf. on Computing Educ.-

Volume 30, Darlinghurst, Australia, Australia, 2004, pp. 317–325.
[36] T. J. McCabe, “A Complexity Measure,” IEEE Trans. on Softw. Eng.,

vol. SE-2, no. 4, pp. 308 – 320, Dec. 1976.

[37] S. A. Mengel and J. Ulans, “Using Verilog LOGISCOPE to analyze
student programs,” in Frontiers in Education Conf., 1998. FIE ’98.

28th Annual, 1998, vol. 3, pp. 1213 –1218 vol.3.
[38] M. Fowler and K. Beck, Refactoring: Improving the Design of

Existing Code. Addison-Wesley Professional, 1999.

[39] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw,
“Building empirical support for automated code smell detection,” in

Proc. ACM-IEEE Int. Symp. on Empirical Software Eng. and

Measurement, New York, NY, USA, 2010, pp. 8:1–8:10.
[40] M. V. Mantyla, J. Vanhanen, and C. Lassenius, “Bad smells - humans

as code critics,” in 20th IEEE Int. Conf. on Software Maintenance.

Proc., 2004, pp. 399 – 408.
[41] M. V. Mantyla, “An experiment on subjective evolvability evaluation

of object-oriented software: explaining factors and interrater

agreement,” in Int.Symp. on Empirical Software Eng., 2005, p. 10 pp.
[42] M. Mantyla, J. Vanhanen, and C. Lassenius, “A taxonomy and an

initial empirical study of bad smells in code,” in Int. Conf. on

Software Maintenance, 2003. ICSM 2003. Proc., 2003, pp. 381 – 384.
[43] R. Marinescu, “Detection strategies: Metrics-based rules for detecting

design flaws,” in Software Maintenance. Proc. 20th IEEE Int. Conf.,

2004, pp. 350–359.
[44] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le Meur,

“DECOR: A Method for the Specification and Detection of Code and

Design Smells,” IEEE Trans. on Softw. Eng., vol. 36, no. 1, pp. 20 –
36, Feb. 2010.

[45] M. Kessentini, W. Kessentini, H. Sahraoui, M. Boukadoum, and A.

Ouni, “Design Defects Detection and Correction by Example,” in
Program Comprehension, IEEE 19th Int.Conf., 2011, pp. 81–90.

[46] M. J. Munro, “Product Metrics for Automatic Identification of,” in

Software Metrics, 2005. 11th IEEE Int. Symp., 2005, pp. 15–15.
[47] J. Kreimer, “Adaptive Detection of Design Flaws,” Electron. Notes

Theor. Comput. Sci., vol. 141, no. 4, pp. 117–136, Dec. 2005.

[48] J. Cunha, J. Fernandes, H. Ribeiro, and J. Saraiva, “Towards a catalog
of spreadsheet smells,” ICCSA 2012, pp. 202–216, 2012.

[49] “Looking Glass Community.” [Online]. Available:

https://lookingglass.wustl.edu/. [24-Feb-2013].
[50] J. F. Pane, B. A. Myers, and C. A. Ratanamahatana, “Studying the

language and structure in non-programmers’ solutions to

programming problems,” Int. J. Hum.-Comput. Stud., vol. 54, no. 2,
pp. 237–264, Feb. 2001.

[51] “Alice Community.” [Online]. Available:

http://www.alice.org/community/. [12-Mar-2013].
[52] The CSTA Standards Task Force, “CSTA K-12 Computer Science

Standards,” CSTA, 2011.

[53] B. G. Glaser and A. L. Strauss, The discovery of grounded theory:
Strategies for qualitative research. Aldine de Gruyter, 1967.

