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Abstract—Novice programmers may lack the experience to 

recognize opportunities to either improve their code or apply 

unfamiliar programming constructs. Yet, these opportunities are 

often clear to an experienced programmer. In this paper, we 

describe an exploratory study investigating 1) the potential value 

of the suggestions experienced programmers make to novice 

programmers and 2) the ways experienced programmers 

envision identifying other programs that would benefit from the 

same suggestion. The results of our study suggest that 

experienced programmers make suggestions that can introduce 

new programming constructs to novice programmers. The 

participants in our study most commonly made suggestions that 

improve the code quality of novice programs, rather than 

changing their output. Furthermore, experienced programmers 

could often state a simple heuristic rule to use in identifying other 

novice programs that would benefit from their suggestion. 

Participants were able to author the rules in pseudocode, mostly 

using combinations of iteration and comparison to find patterns 

of problematic code. However, based on a test implementation of 

a selected set of rules for these suggestions, we conclude that 

support for improving rules through review and community 

input will be valuable.   

Keywords— novice programming; independent learning; static 

code analysis; crowdsourcing 

I. INTRODUCTION 

Estimates predict that low enrollment in computing degree 
programs will leave almost 40% of American computing jobs 
unfulfilled in 2018 [1], with a similar outlook in Europe [2] 
and the Asia-Pacific region [3]. Contributing to this problem, 
many students opt out of studying computer science long 
before they reach college [4]. Yet, between 2005 and 2009, the 
number of secondary schools offering introductory and AP 
computer science classes decreased by 17% and 35%, 
respectively [5]. These numbers are unlikely to improve in the 
near future, due to a lack of certified computer science teachers 
and the absence of computer science in many state curriculum 
standards [5]. Currently, there are three common approaches to 
learning programming without formal computer science 
education: after-school programming classes, reusing code 
from the internet, and free online programming classes.  

Programming opportunities outside of schools, like Scratch 
workshops in the Computer Clubhouse [6], are one way for 
students to gain exposure to programming. Yet, camps and 

workshops like this are extremely limited and require a time 
commitment from in-person teaching support to provide the 
necessary feedback to students. 

Without formal education, novice programmers often reuse 
code examples from the internet to fill in the gaps. However, 
end-user non-programmers often do not understand example 
code [7], which can lead to incorrect code usages and errors. 
Further, novice programmers cannot seek out techniques that 
they do not know exist. Therefore, learning programming from 
reusing code cannot replace the guidance and individualized 
feedback students would likely receive in school.  

Novice programmers who do not have access to 
programming classes in school can also take free online 
computer science courses [8], [9]. Yet, retention rates for 
online classes are low compared to US colleges [10], indicating 
that self-motivation is necessary to take these classes.    

A less readily available alternative to learning 
programming in school is for a novice programmer to get tips 
from an expert programmer they already know, such as a friend 
or family member. Imagine two hypothetical middle school 
students named Beth and Carl, who are learning programming 
independently and do not have access to programming classes.  

Beth is programming a synchronized swimming animation 
and finds a backflip procedure online. She reuses it in her 
program, but the backflip procedure is specific to a certain 
object. Not realizing she can generalize the existing method, 
she recreates an identical backflip method for each of the 
synchronized swimmers. Carl, on the other hand, shows his 
uncle, who is a software engineer, a program where he has 
created an identical swim method for each of five fish. Carl’s 
uncle suggests that he generalize the method for all fish.  

Currently, there is no way for this suggestion to reach Beth. 
If we can capture the suggestion and determine that Beth’s 
program would also benefit from it, Beth might learn how to 
generalize her backflip method. 

We ran an exploratory study to investigate crowdsourcing  
expert programmer suggestions to enable mentoring novice 
programmers at a large scale. We hypothesize that expert 
programmers can make suggestions to novice programmers’ 
code and write rules for those suggestions. We define a rule as 
a simple program that evaluates whether a novice program 
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should receive a suggestion. If possible, this would enable a 
large population of novice programmers to benefit from a 
relatively small number of suggestions. In this study, we asked 
participants to suggest an improvement for a novice program 
and author a rule to identify more general patterns in code that 
indicate that their suggestion would be appropriate. This paper 
addresses the following questions, 1) do participants make 
suggestions that have the potential to teach a novice how to 
improve their program, 2) what does the rule pseudocode tell 
us about how to design support for authoring rules, and 3) in 
practice, how well do rules generalize whether a program is a 
potential “target,” meaning it should receive the suggestion? 

II. RELATED WORK 

This study explores whether expert programmers can 
identify problematic code, provide suggestions to improve 
novice code, and then generalize those suggestions. While no 
one has addressed this question directly, our work builds on a 
variety of research areas involving code analysis, which define 
and evaluate either code correctness or code quality.  

A. Code Correctness 

Researchers have made progress on evaluating code 
correctness in the following areas: automatic grading systems, 
finding bugs and errors in professional code automatically, and 
in novice code using crowdsourcing.  

Automated tests that check code correctness in 
programming assignments provide quick feedback to a large 
number of students and allow professors to assign more 
assignments. A variety of automated grading systems [11]–[17] 
allow teachers to specify assignments and tests that evaluate 
the correctness of code output. While these systems require 
assignments with defined answers, independent learners using 
novice programming systems often work on open ended 
programs that do not have right or wrong answers.   

Evaluating source code can locate bugs and errors, which 
often affect whether code executes correctly. PREfix and 
PREfast are systems that successfully determine the density of 
defects by analyzing code [18]. Static code analysis can also 
find issues in large-scale multi-threaded programs [19] and  
detect security vulnerabilities [20], [21]. However, novice 
programmers, focused on learning programming constructs, are 
mainly shielded from these complex bugs.  

Studies have used crowdsourcing to assist new 
programmers in understanding compilation errors and bugs. 
HelpMeOut, BlueFix and Crowd::Debug [22]–[24] utilize 
example code from a database of users’ error fixes, in 
conjunction with expert explanations, to assist novice 
programmers in understanding and fixing bugs. Our study 
extends crowdsourcing and expert programmer advice to 
present novice programmers with new programming concepts. 

B. Code Quality 

Though Anderson and Shneiderman claim that peer review 
is an appropriate method  for evaluating code quality [25], 
three types of systems define and assess code quality more 
formally: tools for code quality assessment, a subset of 
automatic grading systems, and code smell detection methods. 

A number of tools allow programmers to check the quality 
and style of their code: PMD, Klokwork, SourceMonitor, QJ-
Pro, and StyleCop [26]–[30]. These tools provide standard 
metrics and allow customization of metrics, but are aimed at 
professional programmers and do not have support for 
suggesting new programming concepts or skills. 

A number of automatic grading systems measure the 
quality of student code using standards and structural 
properties. Some systems use metrics as code quality measures 
for student assignments, like the ISO/IEC 9126 standard [31], 
[32] or Berry and Meekings’ style metrics [33], [34]. Other 
automatic grading systems consider the structure of code. For 
example, one framework employs cyclomatic complexity [35], 
[36], while another study uses LOGISCOPE to find knots [37]. 
Cyclomatic complexity and knots find problematic code by 
looking at the paths through a program. These evaluation 
techniques focus on complex structural and style issues or 
aspects of code such as whitespace, all of which novices can 
often ignore while learning basic programming concepts. 

Fowler and Beck [38] developed categorizations and 
definitions of “code smells.” Code smells are patterns of code, 
such as long methods or duplicated code, which may indicate a 
problem. Based on these definitions, a body of research has 
investigated humans and metrics as detectors of code smells. 
Several studies [39]–[41] explore human evaluations of code 
smells, finding low agreement for detection of complex code 
smells. Mantyla, Vanhanen and Lassenius developed a 
taxonomy [42] to enable better understanding of code smells 
for human detection. They found that their taxonomy aligns 
with correlations software developers noted between code 
smells. DECOR and “detection strategies” [43], [44] enable 
humans to operationalize code smells using software metrics, 
while another set of systems [45]–[47] use metrics to 
automatically detect code smells [38]. Based on code smells, 
Cunha, Fernandes, Ribeiro and Saraiva identified smells in 
spreadsheet code and created a tool to find these smells [48]. 
Similarly, indications of issues in novice programs will be 
different from those in software systems. Yet, work on code 
smells supports the idea that expert programmers may be able 
to specify opportunities for improvement in novice code. 

Current systems test correctness of student code, find bugs 
and errors, check quality of student and professional 
programmer code, and find code smells. We address the 
feasibility of expert programmers making suggestions and then 
generalizing which programs should receive the suggestions. 

III. MENTORING IN LOOKING GLASS 

Looking Glass [49] is a drag and drop integrated 
development environment (IDE) designed to help middle 
school students learn to program independent of formal 
education. We chose to explore mentoring in Looking Glass 
partially because of its integration with an online community, 
where users can upload their programs. One way for experts to 
mentor novices is to open a program from the online 
community, edit it, and then re-submit it, which can be easily 
streamlined in Looking Glass.  

 To create a program in Looking Glass, users first make a 
scene and then drag and drop code tiles to create an animation. 



The drag and drop tiles prevent users from making syntax 
errors. Looking Glass has a set of standard methods for 
characters, such as walk, say, and move, as well as a set of 
programming constructs, like the DoTogether, DoInOrder, 
If/Else and CountLoop. Users can also create custom methods 
with sequences of methods and programming constructs.  

In Looking Glass, the realization of a mentoring system 
will involve an interface for mentors to make suggestions and 
author rules. A suggestion is a code improvement a mentor 
makes to a novice’s program, while a rule is a short program 
that generalizes whether the suggestion is likely to improve 
another program. One aim of this study is to inform the design 
of an Application Programming Interface (API) that will 
enable experts to author rules without deep knowledge of how 
Looking Glass stores programs.  

IV. METHODS 

We are interested in the suggestions expert programmers 
make, how expert programmers write rule pseudocode, and 
whether the rules find appropriate target programs. The study 
involved an introduction to Looking Glass, followed by four 
rule authoring tasks, one in which the participant was asked to 
make their own suggestion.  

A. Study Procedures 

This study collects two kinds of information:  the types of 
suggestions programming experts make and rule pseudocode 
that captures how programming experts envision finding target 
programs. Due to time constraints, we asked participants to 
make one suggestion and author a rule that specifies when to 
offer that suggestion, and then write three additional rules 
based on premade suggestions. The study has three parts: an 
introduction to Looking Glass, a “Suggestion/Rule Pair” task, 
and three “Rule Authoring with Premade Suggestion” tasks. 
We randomly assigned each participant an example program 
for each task, such that each participant saw one example 
program from each of four skill groups in Fig. 1. The four 
selected skill levels range from beginner to intermediate, which 
we describe in more detail in the Materials section. Due to a 
lack of student programs in the advanced skill group, we did 
not include advanced example programs in this study.  

1) Looking Glass Introduction 
To enable participants to make a suggestion by editing a 

program, we introduced participants to the components of the 
Looking Glass IDE. After demonstrating a completed program 
created by a researcher, we asked participants to create a 
simple program to familiarize themselves with Looking Glass. 

2) Suggestion/Rule Pair Task 
To investigate the types of suggestions domain experts 

make for novice programs and how they write the 
corresponding rules, we asked participants to create a 
suggestion and then author a rule. We first played an example 
program animation in Looking Glass and provided the 
participant with a skill group diagram (Fig. 1) to guide them 
toward suggestions at an appropriate skill level. We then asked 
participants to make a suggestion by editing the program. 

To explore how expert programmers author rules, we 
provided participants with a rule-authoring template, which is a 

Word document with instructions for the task and space for 
typing the rule. We asked participants to describe the rule in 
English, explaining what pattern of code indicates that their 
suggestion might be useful. We then asked participants to write 
the rule as a program in pseudocode that, when run on any 
novice program, determines whether the novice program would 
benefit from the suggestion they created. Similar to the natural 
programming approach [50], we asked participants to use their 
own vocabulary and format and did not provide any 
information about terms or structure that they should use. 

3) Rule Authoring with Premade Suggestion Task 
The purpose of the rule authoring tasks with premade 

suggestions was to explore how participants wrote rules in 
pseudocode, in order to inform the design of an API. We asked 
participants to author three rules based on premade suggestions 
designed by the experimenters. For these tasks, we showed the 
participant an example program beside a premade suggestion 
and asked them to author a rule, as in the Suggestion/Rule Pair 
task, that finds target programs for the provided suggestion.  

B. Participants 

This study involved 21 participants, five of whom were 
female, ranging in age from 19 to 68. We recruited participants 
through the Academy of Science of St. Louis mailing list 
because these members represent the type of programming 
experts who may be interested in mentoring students in the 
future. Participants’ programming backgrounds range from 
being self-taught to having a Ph.D in Computer Science. Most 
participants listed their occupation as software developer, 
software engineer or programmer. Fifteen participants 
described themselves as an expert in at least one programming 
language and all had experience programming. 

V. MATERIALS 

We created the example programs, premade suggestions, 
skillset diagrams, and the rule-authoring template used in this 
study to simulate the experience of a mentor. 

A. Example Programs 

Participants made suggestions and wrote rules for “example 
programs,” which are slight alterations of Alice programs [51] 
and Looking Glass programs created in a 2010 study. In the 
2010 Looking Glass study, participants had never programmed 
before. Alice is a sister project of Looking Glass that has 
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college-aged users with more advanced skills. The programs 
were selected to represent a variety of skill levels and such that 
we could point to at least one potential suggestion per program, 
but there were often many. The example programs maintain the 
same structure and content as student programs, with changes 
mainly in the characters and props. We created example 
programs due to a lack of student programs compatible with 
the current system. The example programs also remove 
information that might identify the original authors.  

B.  Premade Suggestions 

Each example program has an associated premade 
suggestion, created by the experimenters and used in the “Rule 
with Premade Suggestion” tasks. Suggestions were one of two 
types: code-based or animation-based. Code changes improve 
the coding style of a program, while animation changes 
improve the output of the program. An example premade 
suggestion for an animation change is “A more complex 
animation with body movements was added where Tami 
previously danced. She now moves her left leg and arms to be 
in a dancing position before she turns, instead of just spinning 
in a standing pose.” An example premade suggestion for a code 
change is “A list of characters all doing the same action was 
replaced with a ForEach loop with the array of characters.” To 
show a participant a premade suggestion, we provided them 
with a sheet of paper that contained screenshots of the original 
program and the premade suggestion. The English descriptions 
of the suggestions were printed above the screenshots.  

C. Skill group diagrams 

To help participants make an appropriate suggestion, we 
provided them with a skill group diagram like Fig. 1. These 
skill groups are based on a hierarchy of novice programming 
skills currently being developed, similar to groupings used by 
the Computer Science Teachers Association [52]. For 
participants, the diagrams indicated which of these skills the 
novice programmer likely already knows, which might be 
appropriate to present next, and which might be too advanced, 
based on the structures present in the example program.  

D. Rule-authoring template 

We chose to use a Word document for rule authoring to 
minimize the influence of the IDE on the participants’ coding 
style choices. The document contains instructions asking 
participants to write the rule in a sentence and then in 
pseudocode, such that it returns “True” if the rule has found a 
target program and otherwise returns “False.” 

VI. ANALYSIS AND RESULTS 

The results of this study answer three questions: 1) what 
types of suggestions do programmers make, 2) what does the 
pseudocode tell us about designing a tool for authoring rules, 
and 3) what do the target programs tell us about the rules?  

A. Suggestions  

To explore the types of suggestions participants made, we 
used a grounded theory approach [53], which is an iterative 
process of labeling possibly important features of the data to 
develop categories and theories. We labeled suggestions based 
on the suggestion as a whole. This process resulted in 
hierarchies of categories for Suggestion Type and Suggestion 

Novelty, based on common labels and relationships between 
labels. The Suggestion Types group suggestions by the concept 
or idea the improvement presents. The Suggestion Novelty 
categories consider whether the suggestion utilizes new 
concepts. For categorization purposes, new concepts are 
programming constructs, structures, or methods that the 
example program does not contain. After developing the 
categories using grounded theory, two researchers then 
individually selected categories for the 21 suggestions. This set 
of suggestions resulted from each of the 21 participants 
creating a suggestion in the “Suggestion/Rule Pair” task. The 
categorizations had inter-rater reliabilities of 95% for 
Suggestion Types and 86% for Suggestion Novelty categories.  

1) Suggestion Type 
The data labeling and categorization process resulted in two 

major types of suggestions: code changes and animation 
changes, as shown in Fig. 2. In a code change, the participant 
modified the style of the program’s code, such as adding a 
variable when a value is used multiple times for the same 
purpose. In animation changes, participants modified the 
animation output of the program, such as creating a new 
method fallDown where the character flails and falls 
realistically to replace a method that makes a character turn 
backward without bending any joints. Of 21 participants, 16 
improved the code, 4 modified the animation, and 1 changed 
both the code and the animation. At the most detailed level, 
there are eight suggestion types with no more than 20% of 
suggestions in any one category. Further, the majority of 
suggestions were different than those made by the researcher 
for the “premade suggestions,” indicating that the example 
programs had a wide variety of possible improvements. 

 As seen in Fig. 2, two common code change types are 
creating a new method (4) and restructuring repeated code (4). 
One new method suggestion is for a program where a man 
pushes another man into the ocean. The suggestion extracts the 
animation to a custom method, which makes the action more 
easily reusable. In another example program, a set of kids each 
turn to face the camera sequentially. The suggestion, which 
restructures repeated code, replaces the list of repeated 
statements with a ForEach loop, improving the code style and 
introducing or reinforcing ForEach loops. 

Six participants improved the usability of code by 
generalizing a method (3) or returning the animation to a 
default state (3). Generalizing a method can be, for example, 
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adding parameters or making a method accessible to a class of 
objects, rather than a single character. Returning code to a 
default state involves bringing a character to a position where 
the animation can continue or is more easily reusable. For 
instance, one example program has a dancer jump into the air 
and the suggestion returns the dancer to the ground.  

Although we encouraged both code and animation changes, 
most participants made code changes, for several reasons: lack 
of familiarity with Looking Glass, fear of changing a child’s 
creation, and difficulty generalizing animation changes. Since 
participants only had a short introduction to Looking Glass, 
changing programming constructs or restructuring code was 
easier than creating animations. Several participants 
commented that they did not want to change the animation 
because they were unsure of the original intentions. Other 
participants considered changing the animations in a program, 
but stated that they did not believe it would apply to other 
programs. These results suggest that experts will be more 
likely to improve novice code than animations. 

2) Suggestion Novelty  
Thirteen of the 21 suggestions utilized explicitly new 

concepts or constructs, while 10 reinforced constructs or 
concepts already present in the example program. The majority 
of suggestions are either in the category “Method creation or 
abstraction” (9) or “Added method calls” (6). In the suggestion 
novelty classification in Fig. 3, a method call refers to a 
provided method, like walk or move and programming 
constructs refer to loops and conditional logic. Method creation 
involves restructuring a sequence of methods into a custom 
method. Data storage refers to variables and parameters.  

 Both new concepts and reinforcement can be valuable 
feedback for novice programmers, as using a concept once 
does not imply mastery. Yet, it may be useful for the system to 
keep track of the suggestions given to users in order to prevent 
overwhelming repetition of suggestions. Further, when a 
suggestion does not introduce something new, providing an 
explanation may help students understand why a suggestion 
will improve their code and what they might learn from it.  

B. Rule Pseudocode  

We analyzed the rule pseudocode to inform the design of 
an API for rule authoring. To enable any programming expert 
to write rules, the API must provide mentors with access to the 
information in the novice programs that they need. The rules’  
pseudocode provides insight into the types of functionality 
domain experts expect to have while writing rules.  

The 21 participants wrote 72 rules, averaging 3.5 of 4 
completed tasks, due to time. This set of rules results from each 
participant completing a “Suggestion/Rule Pair” task and up to 
three “Rule Authoring with Premade Suggestion” tasks. We 
analyzed pseudocode with a similar grounded theory approach 
as used for Suggestion Type. For pseudocode, we labeled each 
line of code and categorized them individually. The rules 
contained 287 total lines, not counting lines that were braces or 
the required return statements. On average, rules contain four 
lines of code, with a standard deviation of 1.8. Consistent with 
the method for categorizing suggestions, two researchers 
independently categorized pseudocode lines, with a 94% inter-
rater agreement rate. We will not discuss the 6% of disputed 
lines, as they fit into multiple categories or were ambiguous. 
The remaining 94% of lines fall into three overarching 
categories: iteration, comparison, and “other.”  

Most of the 24% of pseudocode lines identified as neither 
iteration nor comparison were either matching functions, 
attempts to access dynamic information, or count functions. A 
few participants created template matching functions that 
defined a set of constraints and then checked whether any lines 
met those constraints. Other participants checked information 
only available at runtime, such as the location of characters. 
However, rules with access only to the static code cannot check 
runtime information. Several participants used functions to 
count the number of times a line occurs. Because participants 
rarely used these types of functions or we deemed the functions 
not viable, we focus on iteration and comparison.   

 The remaining 70% of pseudocode lines are either iteration 
or comparison, indicating that the API should focus on 
allowing mentors to iterate through programs and perform 
comparisons to find code patterns.  Fig. 4 shows an example of 
a rule that has the typical pseudocode structure: line 1 iterates 
through each of the methods and line 2 compares the name of 
the current method call to the name of the next method called. 

1) Iteration 
 The iteration lines fall into six categories: three ways of 

iterating through lines of code, and iterating through 
parameters, sets of objects, and programming constructs. The 
number of pseudocode lines for each of the categories is shown 
in Fig. 5. When iterating through lines of code, some 
participants assumed access to a set of lines, in a ForEach(line) 
style, for the whole program or within a certain scope. 
Surprisingly, a number of participants parsed the program as 
strings in a While!(EndofDocument) style. However, it will be 
less work for mentors to iterate through elements in the 
program than to write complex regular expressions to parse 
strings. By far, the most used iteration style was through each 
line in the program, but providing support for checking 
conditions in a certain construct or in a custom method is also 
likely to be useful. 

2) Comparison 
Participants often used comparison to determine whether a 

line or group of lines contain a certain issue. Comparisons fell 

 
Fig. 3. Suggestion novelty categories 

1: foreach(allMethods as k => method) 

2:   if(method->name == allMethods[k +1]->name) 

3:     return true;  

Fig. 4. Example rule pseudocode 



into three high-level groups: comparison of multiple lines of 
code, whole lines or methods, and part of a line or method, as 
shown in Fig. 6. The differences result from participants either 
envisioning the code as a string or as a structure. Eight 
participants treated programs as strings, parsing and pattern 
matching with functions like line.contains(“methodName”). 
The other 13 participants assumed that programs have a 
structure that they could query for information, such as 
accessing the method name with a function like 
line.getName(). These categories imply that the API design 
should focus on accessing parts of a method and enabling 
comparison of entire lines of code. Only 5 pseudocode lines 
compared multiple lines of code, but the amount of code 
required to accomplish this manually suggests that API support 
would be useful.  

We used the pseudocode categories to develop a 
preliminary API, which enables iterating through lines of code, 
iterating through programming constructs, comparing 
consecutive lines of code, comparing multiple lines of code, 
comparing non-consecutive lines of code, checking values of 
parameters, and comparing parameters of multiple methods. 

C. Rule Implementation  

To evaluate whether rules are likely to work in practice, we 
implemented each of the rules from the “Suggestion/Rule Pair” 
task using the preliminary API. We chose to implement these 
rules because they are based on suggestions participants’ made, 
rather than premade suggestions. Two pairs had identical 
implementations, so we tested the remaining 19 rules.  

We tested each rule on the 165 programs currently 
uploaded to the Looking Glass Community. We will refer to 
the Looking Glass Community programs as the “mixed group,” 
since Looking Glass Lab members, ranging from college 
sophomores to a professor, contributed 92 of these programs. 
We also tested the rules on 55 programs created by middle 
school children, the “novice group,” in an unrelated 2013 
study. The novice group did not receive instruction on how to 

program. Although this distribution of test programs is not 
ideal, program authors do range from novice to advanced. 

 Running each rule identifies the target programs that could 
benefit from the associated suggestion. Table 1 summarizes the 
rules, grouped by quality, and reports the percentages of 
programs in the mixed and novice groups that fit the rules. We 
initially hypothesized that these percentages might indicate 
whether a rule is too general or too specific. In practice, other, 
unrelated factors such as skill level of the user, affect the 
percentage, making it only a weak indicator of rule quality. 
Our analysis suggests that rules range in quality from unfixable 
to immediately applicable. Thus, we focus our discussion of 
rule quality on the following four types of rules: Unfixable 
(UF), Bad Code (BC), Fixable Code (FC) or Good Code (GC).  

1) Unfixable Code (3 rules) 
Unfixable rules have issues such as presenting suggestions 

that are either a poor example or irrelevant to the user’s 
program. For example, UF2 looks for sequences of say 
statements and creates a new method, passing in the text strings 
as parameters. In an object-based context, this presents an 
unrepresentative example of using a new method. In most 
cases, Looking Glass programmers use new methods to create 
and name a cohesive set of actions for a character.  

2) Bad Code (2 rules) 
Based on their English descriptions, the two rules in this 

category are inspired by valid observations. However, the 
pseudocode rules do not match these descriptions. BC1, for 
example, intended to look for cases in which a character 
performs two actions that can be condensed into a single 
action. For example, a new user might not realize that 
parameter values can be modified and use a string of move 
statements to position a character, rather than changing the 
distance moved. In practice, the rule searches for a sequence of 
two identical lines. While two move forward statements can be 
easily combined, not all actions have that characteristic.  

3) Fixable Code (6 rules) 
Fixable code rules are very close to making appropriate 

suggestions, but the code neglects to check one or more 
conditions that could improve their results. To get a sense for 
how these rules might perform if corrected, we also created 
fixed versions of them. For example, FC1 suggested creating a 
new method if a character performs 3 actions in a row. A 
sequence of actions by the same character is often a reasonable 
place to suggest creating a new method. We modified this rule 
to check for at 6 actions instead of 3 and to ensure that those 
actions are not already in a custom method. This dramatically 
reduced the percentages of target programs for the mixed group 
from 68 to 8 and for the novice group from 70 to 0. In Table 1, 
we report the original matching percentage followed by the 
fixed matching percentage for the mixed and novice groups. 

4) Good Code (8 rules) 
Eight of the rules present suggestions to an appropriate set 

of programs with no improvement necessary. Some of the rules 
with good code are straightforward programming concepts. For 
example, GC2 looks for unnecessary DoTogether statements, 
those that contain fewer than two statements. GC3 replaces 
repeated actions by a set of characters with a ForEach loop.  

 
Fig. 5. Iteration style categories 

 
Fig. 6. Comparison Style categories 



Other rules in this category were less straightforward. GC1 
looks for a sequence of color changes. Initially, we were 
skeptical that this would be generally useful. However, the 
cases in which programs repeatedly change colors are mostly 
implementing a flash behavior. While this suggestion may not 
be offered with great frequency (only 2% of programs 
matched), it is likely to be a good suggestion when it is offered.   

VII. CONCLUSIONS AND FUTURE WORK 

Overall, nearly three quarters of the rules experts wrote 
were either strong or readily fixable, which provides some 
support for the approach of crowdsourcing suggestion-based 
help for novice programmers. In fact, our study may 
underestimate the likely percentage of good and readily fixable 
rules. Participants wrote rules in a Word document to prevent 
any influence of the IDE on their pseudocode. However, this 
also removes feedback participants would normally receive 
when programming. We intend to develop an interface and API 
to enable rule authoring, editing and testing within Looking 
Glass. We expect that the ability to test rules prior to 
submission could substantially improve their quality.  

In addition to the lack of feedback, we hypothesize that 
varying experience could also explain some of the variety in 
rule quality. Our study attracted an enthusiastic response from 
computing professionals with a wide range of experience: in 
addition to software engineers with decades of experience, 
participants included students, self-taught web developers, and 
people who used to program but do not currently. However, 
there appeared to be little relationship between rule quality and 
experience. This suggests that there will always be variance in 
rule quality and that we will need to design crowdsourcing 
approaches with this in mind. One can imagine a collaboration 

system where a rule requires vetting before “going live.” The 
system would not recommend suggestions to novices until a 
number of other mentors certify that the rule is appropriate. 
Mentors could either edit inappropriate rules or vote them 
Unfixable, in which case they would eventually disappear from 
the system. In future work, we plan to test the effectiveness of 
this type of crowdsourced rule evaluation system. 

Finally, the nature of the rules implies that we will need to 
use care when offering suggestions to novice programmers. 
While some rules identify matches with 100% certainty, others 
do not. DoTogethers with fewer than two statements (i.e. GC2) 
can always be simplified. In contrast, GC4 is inspired by the 
observation that methods called repeatedly should be free of 
side effects, such as ending in a location different from the start 
position. This rule finds methods called multiple times that 
contain move animations. While this may be appropriate for 
certain programs, some methods appropriately need the ending 
position to differ from the starting position. Additionally, this 
rule looks only for a move method, which is not a perfect signal 
that a method has side effects. Consequently, systems that offer 
suggestions based on mentor rules will need to be designed 
such that suggestions are unobtrusive and are not offered 
endlessly. The development of this suggestion system will also 
enable evaluation of whether rules and suggestions actually 
teach novice programmers new programming concepts. 
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