
Exploring Novice Programmer Example Use

Michelle Ichinco and Caitlin Kelleher

Department of Computer Science and Engineering

Washington University in St. Louis

St. Louis, Missouri, United States

{michelle.ichinco, ckelleher}@wustl.edu

Abstract— Both experienced and novice programmers use

examples while programming, whether from tutorials, forums, or

source code. Novice programmers, however, often find it

challenging to use unfamiliar example code. Little is known

about the challenges of using examples, making it difficult to

design support for novice programmer example use. We ran an

exploratory study of novices using examples to complete

programming tasks. To analyze programming behaviors, we

define the ‘realization point’ as the time when the participants

discover the crucial concept in an example. Our results show that

participants spend more time after the realization point using the

concept from the example than they do identifying which part of

the example to use. We describe hurdles and strategies, types of

tasks and their behaviors, and finally, implications for

supporting example use.

Keywords—novice programming; code examples; code reuse

I. INTRODUCTION

Programmers of all skill levels leverage example code
while performing programming tasks [1]. Though experienced
programmers can easily understand and integrate example code
into their programming problem, inexperienced programmers
often have a much harder time understanding how to use the
example code in their own programs [2]. Two significant
populations susceptible to this problem are school-aged novice
programmers using systems like Scratch [3] and Looking Glass
[4], and end-user programmers [5].

While prior work found that novices struggle to make effective
use of programming examples, the specific causes are not clear.
Yet, when used effectively, examples can be a powerful learning
resource. For example, research in mathematics education found
that an example based approach enabled middle school students to
learn three years worth of algebra in two years [6]. A deeper
understanding of the ways in which novices attempt to solve
problems using examples and the ways in which they struggle
could inform the design of new example supports within novice
programming environments [3], [4] and potentially lead to greater
educational impact. We aimed to answer two questions: 1) what
hurdles do novice programmers encounter and 2) what strategies
do they use while attempting to use examples?

To answer these questions, we ran an exploratory study of
novice programmers using example code to solve
programming tasks. Using transcripts of participant
conversations and logs of program interactions, we describe the
strategies novice programmers used and what challenges they

encountered. We then relate the strategies and hurdles to a new
concept we define in this paper, the ‘realization point’. Finally,
we suggest how systems can support novice programmers in
overcoming hurdles.

II. RELATED WORKS

We situate this work within two main bodies of research:
A) understanding the behaviors of programmers, especially
those using examples or reusing code, and B) existing systems
designed to support example code use for programmers. These
bodies of work span two use cases of programming with
examples: using example code as a resource for learning and
reusing example code in a new program. However, this work is
relevant in both cases, as identifying barriers to understanding
example code has the potential to assist in either scenario.

A. Understanding programmer behavior

This work is based around two areas of work on
programmer behavior: programmers using examples or reusing
code and general programming behaviors. Studies on
programmer behavior while reusing code do not focus on in-
depth analysis of novice programmer example use, while
studies of non-expert programming behavior inspire our study.

1) Examples and code reuse
Several studies seek to understand how programmers use

example code naturally, though some focus on experienced
programmers as opposed to novices. One such study explores
experienced programmers reusing example code and, similar to
this work, describes the programmers’ behaviors during tasks
using example code [7]. Rosson and Carroll find that expert
programmers ‘debugged into existence’ and only used
examples as an initial source of information. It is important to
note that this study took place before example code was widely
available online. Another study looked at how programmers
search the internet throughout programming tasks and find that
programmers used online code examples for learning and
reminding themselves of what they already know [1]. They
also discovered that programmers started to use code they
found before fully understanding it and made mistakes while
adapting copied code. However, we do not know how these
behaviors and problems apply to novices.

Few studies focus on non-expert programmers and those
that do only briefly discuss code examples and reuse as a part
of larger works. In analyzing the practices of informal web

development, Rosson, Ballin and Nash found that
programmers often use example code as a model when looking
for general ideas of ways to design websites [2]. However,
when they try to use the code, the programmers cannot
effectively integrate it into their projects. To our knowledge, no
work focuses specifically on the behaviors, strategies, and
confusions of novice programmers using examples.

2) End user and novice programming behavior
This work was inspired by the study design and analyses of

previous research on the challenges and strategies of non-
expert programmers. At a high level, researchers have studied
the general behaviors exhibited during programming, such as
debugging [8] and barriers in learning programming [9]. Both
of these studies collected transcriptions to find out what
confused participants, similar to our study. More specific to
reusing code, research has also investigated the behaviors of
non-expert programmers during mashup programming [10] and
when attempting to locate functionality in unfamiliar code [11].
However, the body of research on novice and end user
programming behavior lacks a focused study of example use.

B. Supporting programmers’ example use

Based on the existing work on examples in education and
programming, educational systems and programming
environments often include support for using examples.

1) Educational systems
Educational systems for programming often provide

examples similar to this study, where code is available along
with the ability to run the code. Researchers have worked on
example selection [12], as well as presenting examples as
learning material for learning programming [13]–[15]. Another
tool, the ‘Explainer’, provides support for learning from
programming examples based on previous learning theories, by
allowing programmers to view multiple forms of the example
as well as programming plans [16]. Redmiles found that with
Explainer, participants were more consistent and direct in how
they completed tasks. Yet, these studies focus primarily on the
design of the systems, as opposed to understanding how novice
programmers use examples and what issues they have.

2) Programming systems
End user programmer systems focus on enabling correct

selection of examples and supporting the repurposing of
example code, but tell us little about what programmers are
confused about as they try to use the examples. Some tools,
like Blueprint [17] and Fishtail [18], integrate example search
into programming environments, improving programmers’
abilities to search for examples without having to switch
contexts. Other tools integrate with web browsers. Mica [19]
and Codetrails [20] augment searches to improve the results for
programmers looking for examples. In addition to improved
example search, Snipmatch also supports integration into code,
similar to Codelets and Webcrystal [21]–[23]. On the other
hand, Looking Glass provides a way for novice programmers
to select which part of a larger program they want to reuse
[24]. These studies often compare programmers’ success with
and without the tools, but do not address the behaviors of
programmers using examples. In this work, we seek to describe
how novices utilize examples when programming.

III. STUDY SETUP

We ran an exploratory study to understand the hurdles
encountered and strategies used by novice programmers
working with examples.

A. Participants

We recruited 21 children aged 10-15 from the St. Louis
Academy of Science mailing list. We screened participants to
ensure that they had three or fewer hours of programming
experience. Three children had more than three hours of
programming experience, so they participated in another study
instead. Our 18 participants had an average age of 11.4 (σ =
1.4); 10 participants were female.

For each session, we randomly assigned participants to
pairs, such that in the end, we had 9 pairs of participants. We
had participants work in pairs because formative work showed
that children were not actively ‘thinking out loud’ on their
own, even when instructed to do so. We found that this strategy
was effective in getting most pairs to have continuous
conversations about the tasks, but we acknowledge that having
the participants work in pairs changed the dynamics of the
situation and likely improved performance.

B. Materials

We augmented a novice programming environment with
examples and authored completion programs and examples.

1) Looking Glass
We conducted this study using Looking Glass [4], a drag

and drop novice programming environment where the output
of a program is a 3D animation. In this study, we augmented
Looking Glass with example code in an un-closable dialog
box, as shown in Fig. 1-C. The example always had a red
outline around the important concept for emphasis. We chose
to provide this emphasis because early testing indicated that
this red highlighting could assist novice programmers in
identifying the important part of example code. We did this
instead of comments to describe the example, like in [17], [25],
because our goal was to find out what problems novices have
using examples. Having an explanation of the example might
help novices to use the example, while we believe the emphasis
merely gave direction without explanation. Furthermore, most
examples that programmers find online are not annotated,
though this type of emphasis could be added automatically.

2) Completion programs
We created six completion programs based on six concepts

of varying difficulty, selected based on formative testing. Each
program completion task focused on a unique programming
concept: simple parallel execution, a for loop, an unfamiliar
API method, using a function as a parameter, a while loop
condition, and a for each loop iterator. The instructions for
each task ask participants to add to or modify the given
program to create a specific animation. The completion
program was always a very simple program, only including
basic programming statements similar to those participants had
seen in the training task. The solution for each task required
adding the complex concept in the example code, such as
simple parallel execution, as shown in Fig. 1-C.

3) Examples
We created a code example for each program completion

task to simulate a well-selected example found online. Each
example contained the concept necessary to complete the
associated task. However, in order to prevent the tasks from
being obvious, we used formative testing to ensure that the
example did not directly map to the solution. For example, in
Fig. 1-B, participants needed to add two ‘Do together’ blocks
and rearrange the statements, while the example only shows
one block in Fig. 1-C.

C. Study Design

This study took a total of 90 minutes. Participants
completed a demographic and computing history survey, a
training task, and six program completion tasks, as shown in
Fig. 2. If participants finished early, they were allowed to work
on optional program completions (which we did not analyze),
or create their own program. In this work, we focus only on the
six programming completion tasks. We allowed participants to
ask questions at any point during the study.

1) Training Task
Pairs first completed a training task that was designed to

familiarize them with the programming environment. They
received an instruction sheet with directions and images that
showed where to find essential elements in the interface.

2) Program Completion Tasks
Pairs then completed six program completion tasks, which

they saw in one of six orders that were balanced across
participants. In these tasks, participants worked on completing
a program (Fig. 1-B), given instructions and an example (Fig.
1-C). For each program completion task, participants had a

total of eight minutes to work on the task, split into two four-
minute halves. We selected the number of tasks and task times
based on formative and pilot studies.

After the first 4 minutes of the task, there was a mid-task
interview, during which the researcher asked the participants
questions about what they had tried so far. The purpose of this
interview was to encourage participants to discuss their thought
process and to encourage participants to use the example, if
they had not yet used it. Encouraging participants to use the
example halfway aligns with our goal of understanding
example use. At the end of the mid-task interview, pairs had
another 4 minutes to complete the task. We encouraged
participants to keep trying if they told us they completed the
task but it was not correct, which likely increased success rates.
Once the task was complete, the researcher performed a final
interview for that task.

D. Data

We collected demographic and computing history survey
data, logs from the programming environment during the
sessions, audio logs, and task programs.

IV. ANALYSIS METHODS

We analyzed completion program correctness and audio
recordings from this study.

A. Program Correctness

We scored each task as either correct or incorrect based on
the instruction critera given to participants. In four cases, tasks
did not fit one of the criteria, but they used the correct concept
fully and correctly, so we also marked those as correct. For
example, one criteria was to not add extra code blocks into a
loop task to ensure that they used the loop instead of repeated
code blocks. However, if the resulting code used the loop
correctly but they had extra code statements added elsewhere,
we still counted solutions as correct.

Fig. 2 Each pair completed one training task and six programming tasks

Figure 2

Fig. 1 A) Participants can drag and drop the programming blocks from this menu into their program. B) The program shown here is a completion program

given to a participant at the beginning of the task. We asked participants to modify the programs. C) This dialog was added to the programming environment

only for this study. It includes the task instructions and the example code.

B. Audio Recordings

To analyze the audio recordings, we transcribed them,
created two sets of labels to categorize the focus area and
processes, and determined the ‘realization point’ for each task.

1) Transcription
We transcribed a total of 7.6 hours of audio from the

program completion tasks in order to analyze what participants
were saying as they completed the tasks. We then broke the
transcriptions up into segments in which participants were
focused on a single topic, such as a question and an answer.

2) Labels
We created two sets of labels to categorize how participants

spent their time during programming tasks with examples. We
wanted to know 1) which part of the interface or task the
participants were focusing on, and 2) what they were doing or
talking about within that context. To capture these ideas, we
created two sets of labels, one for the focus area of the
statement (such as the instructions or the example code, shown
in the top of Table I), and the other for the process the
participants were completing at that point (such as describing
something or talking about an idea, shown in the bottom of
Table I). We then labeled the transcriptions. To obtain inter-
rater agreement, two authors took a set of 20% of the task
transcripts and iterated four times on 1/5 of that set to help
clarify the labels. The authors then achieved >80% agreement
on the whole 20% set labeling the transcripts independently.
One author labeled the remaining transcriptions.

3) Realization Point
Through our analysis of the audio transcriptions, we

discovered that all but two tasks had a definitive point when
the participants first noticed which part of the example to use.
We believe this is a valuable feature of example use, and call
the point when a participant first talks about the critical
element of the example the ‘realization point’. We believe that
identifying realization points and looking at behavior before
and after the realization points is a new way of analyzing the
behavior of programmers working with examples. The
realization point separates the task into two parts: 1) the time
before participants know what concept to use, and 2) the time
the participants spend trying to figure out how to apply that
information to the task code.

We can objectively determine the point in the transcription
when one of the participants first mentions the necessary
concept in the example. One possible limitation of the
realization point is that participants may have thought about the
concept before they said it out loud. The natural flow of
conversation between participants in most pairs, however,
makes it likely that that participants talked about their
realization right away.

V. CORRECTNESS AND TIMING

In this section, we report the overall correctness, task times,
and times before and after the realization point to give a high
level idea of what the task data looks like.

A. Program Correctness and Task Time

Out of 54 total tasks, participants correctly completed 37
tasks (69%) and failed to complete 17 tasks (31%). On

average, it took participants 5.27 minutes (σ = 2.24 min.) to
complete a task, including those who spent the whole 8
minutes and did not finish the task. Task times ranged from
1.63 to 8 minutes, as participants had up to up to 8 minutes in
total. In one of the 54 tasks, the timer did not stop the
participants at the 8 minute mark, but from the logs we can
determine what they accomplished within the 8 minutes and
only analyzed that period of the task.

B. Realization Point

Across all tasks, pairs spent an average of 1.9 minutes (σ =
1.5 min.) before the realization point, ranging from 0.2 minutes
to 7 minutes. For only 2 of the 54 tasks, participants never
reached a realization point, so we exclude these task times
from the averages for both before and after realization times.
After the realization point, pairs spent 3.4 minutes on average
(σ = 1.9 min.), with times ranging between 0.3 and 7.5
minutes. Notice that participants spent longer after the
realization point than before (3.4 vs. 1.9 min.), which suggests
that using the concepts from the example was more challenging
than identifying them.

VI. HURDLES AND STRATEGIES

Because behavior before and after the realization point
differs, we first describe two hurdles that occur before the
realization point, followed by those after the realization point.

TABLE I. TRANSCRIPT LABELS

Focus area labels

Instructions: Talking about or reference the task instructions.
Programming Environment: Talking about a part of the programming

environment without mention of the task or example code.

Example Code: Reading or talking about the example code, specifically
referring to objects or parameters used in the example.

(Example or Task) Execution: Focusing on executing either the task

program or the example code, as differentiated by task logs.
Task Code: Reading or talking about the task code, specifically referring to

objects or parameters used in the task.

Unknown/Other
Off-topic: Not talking about the task

Process labels

Description: Reading, paraphrasing or explaining part of the focus area.

Description-Realization: Describing something when they make a
realization or describing their realization. This is often signaled by an

“Oh!”- like statement.

Description-Don't Understand: Describing something and making an
explicit statement about not understanding how something works.

Idea: Talking about an idea for something to complete the task. It may be

abstract, concrete, or not even explicitly stated. Ideas can also be negative,
such as telling their partner not to do a certain thing.(*This does not include

actions like “play the example.”)

Idea-Realization: Talking about an idea about what to do next in which
they seem to suddenly understand what needs to happen. This is often

signaled by an “Oh!”-like statement.

Idea-Don't know how: Talking about an idea about something to do next to
solve the task, but they do not know how to carry out the idea.

Evaluation-Working: Declaring that their program is correct.

Evaluation-Possibly working: Declaring that that their program might be
working.

Evaluation- Not working: Declaring that their program does not work.

Unknown/Other

Then, we describe three strategies. We call these ‘hurdles’
because many pairs overcome the challenges on their own.

A. Context distraction hurdle

Often, participants spent time at the beginning of a task
exploring the task code and programming environment or
generating ideas from those contexts. For instance, in a few
tasks, participants wanted to move a UFO to the ground. Even
though the instructions told them they could not use numerical
values to accomplish this, a few pairs wanted to explore the
different numerical values to see how they worked. In another
task, a participant wanted to explore a parameter called ‘as
seen by’ after the pair talked about not having any ideas about
how to complete the task. In this task, the participants actually
needed to insert a function, but first they want to explore what
‘as seen by’ does: “Wait, can you, wait click ‘as seen by,’ just
out of curiosity, a little more. Just try one of those things: begin
gently, begin gently and… do you know?” We can also see this
hurdle through the transcription labels, where tasks have
multiple task code- idea and programming environment- idea
labels before participants looked at the example.

B. Example comprehension hurdle

In some cases, participants’ confusion about the example
prevented them from using it or being able to generate ideas
based on it. After having the researcher suggest that they use
the example during the mid-task interview, one pair had the
following conversation: “Play example. I don't get how that's
supposed to help us. Yeah, I have no idea.” In this case, the
participants did not understand how the example was related to
their task, so they did not even consider using it to prompt
ideas. In other cases, participants did not understand what was
happening in the example, such as one participant who
describes an example where a ghost moves toward a treasure
chest until the two objects overlap. In this quote, the participant
was reading part of the example code: “Ghost move toward
treasure chest. Huh. That’s weird. Hmmm.” However, he does
not read the next part of the code, which is the critical
component. In these cases, the transcripts often have example
code or example execution labels early in the task with a much
later realization point.

C. Programming environment hurdle

After participants discovered which programming concept
to use, they sometimes could not find it in the programming
environment. For example, a pair of participants has this
conversation about using the ‘repeat loop’: “then you do repeat
two times. How? But it says that you can repeat. Where is the
times thing? I don’t see that. Stop. Oh here, jump. We got that.
I was just trying to find the…” At that point, the participants
have been talking about the repeat loop for two minutes and it
is time for the mid-task interview, so they tell the researcher
about their problem finding the repeat: “so I was kind of
confused because we can’t find the. […] We can’t find how to
do the repeat.”

In other cases, participants found what they wanted to use,
but could not figure out how to select or move it to accomplish
their goal. One such participant had a clear idea of what they
wanted to do, but did not know how to accomplish it: “Well we
take the collection and put it where the girl was so that it

moves them all up at once. Okay, so how are we supposed to
do this?” These types of issues are commonly labeled
programming environment: don’t know how and programming
environment: description- don’t understand in the
transcriptions.

D. Code misconception hurdle

Sometimes participants had misconceptions about how
their programs worked. In these cases, participants thought
they knew what to do to complete the task, but that idea was
actually incorrect. One participant incorrectly thought that
changing the ordering of their code would make two things
happen at the same time: “Maybe you put the right shoulder,
maybe you switch those around. So put this one right there and
that one right there. Why would we do that? Cause then it
would go in sync.” However, their real problem was that they
needed multiple parallel execution blocks. Sometimes, these
misconceptions led participants to generate new ideas that
helped them to succeed, but misconceptions added to task time,
as they required participants to debug the problem. In other
cases, code misconception hurdles were followed by code
comprehension hurdles, in which participants expected their
code to do one thing, but it did another.

E. Code comprehension hurdle

Participants sometimes talked about not understanding how
their code worked: “Why is he not on the ground,” “Let's see
how this works out. Why didn't the rabbit move,” “What the
heck happened with this jump,” and “What did we do? I
thought he’d jump again.” In these questions, participants had
an expectation of what would occur when they executed their
code, but that expectation was not met. Responding to these
questions lead to other hurdles, like context distraction (A), but
also spurred strategies like idea generation (F) and code-
example comparison (G). Common labels for these types of
problems are task execution: description-don’t understand.

F. Idea generation strategy

After the realization point, if participants did not have a
plan for how to actually use the programming concept to solve
the task, many still generated ideas based on the task code. We
classify behaviors as part of this strategy if they are not based
on the example code nor on a previous failed attempt. One
participant asked their partner a slew of questions about what
to do next “Do we have to put that up there or what? Do we
move them in there or something? For it to work? Do we move
this?” These questions refer to multiple different possible next
actions, none of which the participant seems to base on any
specific rationale. Another participant stated “Huh. I have no
idea what you’re supposed to do, but I’ll try something.” While
this process can be haphazard, the willingness to keep trying
often resulted in success. The task code: idea and execution
labels often accompany this strategy.

G. Code-example comparison strategy

Revisiting the example after the realization point while
trying out ideas helped participants to complete the task. For
example, a pair of participants were working on a task where
they need to get a girl to walk a certain distance and then have
a rabbit run away. Solving the task depended on them figuring
out to use the expression ‘not overlapping’, but the not operator

had to be added separately. They first get the ‘overlapping part’
and then return to the example and eventually figure out that
they are missing the ‘not’: “Okay. Now, when I play it, she
walks up, but the rabbit doesn’t run. Overlapping. Overlapping
with… Play. It doesn’t do it. That’s weird. Not is true. But here
it’s just is true … That looks like the example. Yeah, but it’s
got this whole red line around it, but it’s got this not thing.”
After participants have worked with the task code for a little
while, they are better able to identify meaningful differences
between the example and task programs.

H. Example emphasis strategy

Some participants stated that the red outline helped them
find the important part of the example, even though we did not
provide any explanation of the outline (see Fig.1). When asked
how they decided to use a certain concept, one participant
stated, “we just saw the outline.” Another participant asked the
researcher “where is the repeat? We saw it outlined.” We
provided visual emphasis because we wanted participants to
have a cue to help them move through the task, but we did not
want to provide hints as to how the example actually worked.

VII. TASK BEHAVIOR GROUPS

Overall, this data contains a variety of task behavior
profiles. Fig. 3 shows a graph of the 54 tasks where the x-axis
is the time before the realization point and the y-axis is the time
after the realization point. We noticed that there are tasks that
spent much more time than the average before and after the
realization point, as well as tasks that were overall completed
much more quickly than most. In this section, we wanted to
explore what happened in these extreme cases. To do this, we
selected 5 tasks (approximately 10% of the data) that
performed best and worst before and after the realization point:

 Long conclusion: the 10 tasks where pairs spent the
longest time after the realization point (5 correct, 5

incorrect)

 Slow start: the 10 tasks where pairs spent the longest
time before the realization point (5 correct, 5 incorrect)

 Quick: the 5 tasks correctly completed the quickest

 No realization: the 2 tasks where participants never
reached a realization point

For each of the groups, we describe their behaviors,
hurdles, and strategies based on the transcriptions. Fig. 4 shows
a set of relevant transcription labels for this discussion and the
average count of each label.

A. Long conclusion group

Since participants, on average, spent more of their task time
after the realization point, we wanted to know what caused
long conclusions, shown in the top grouping of Fig. 3.

1) Correct long conclusion
Tasks in this group were slowed down by the number of

ideas participants had, as well as participants’ incorrect
expectations of the code. Likely, participants successfully
completed these tasks because they continued to generate
ideas, and because they revisited the example. While
participants in other groups spent time talking about not
understanding why the task code executed a certain way,
participants in this group revisited the example to try to figure
out how their code and the example differed. Fig. 4 also shows
that this group had the most programming environment ideas,
but not many statements where the participants talked about
not understanding or not knowing how to find a code block.
This likely means that they just needed to try a few ideas
before finding what they needed. Behaviors after the
realization point included two main hurdles: code
misconception and programming environment, but participants
used the code-example comparison strategy and the idea

Fig. 3 Time before realization point vs. time after realization point, with correctness and behavior group annotated with color and shape

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400 500 600

S
ec

o
n

d
s

a
ft

er
 r

ea
li

za
ti

o
n

 p
o
in

t

Seconds before realization point

Correct, no group Quick, Correct Slow start, Correct Long conclusion, Correct

Incorrect, no group No realization, Incorrect Slow start, Incorrect Long conclusion, incorrect

Slow start (10)

Long conclusion (10)

No realization,

Incorrect (2)
Quick, Correct (5)

generation strategy.

2) Incorrect long conclusion
The tasks in the incorrect long conclusion group seem to

have been the most slowed down by the programming
environment (see Fig. 4). This means that after the realization
point, participants spent time trying to find code blocks or
struggling with system mechanics. However, participants still
used the idea generation and code-example comparison
strategies, during which they thought of ideas from the task
code and executed the code to see if the ideas worked.
Unfortunately, participants in this group were the most
confused about how their code worked, which likely meant that
they generated many incorrect ideas. Overall, these tasks had
similar hurdles and strategies to tasks completed correctly:
programming environment and misconceptions hurdles and the
idea generation strategy. These tasks, though, also suffered
from the code comprehension hurdle.

B. Slow start group

In this section, we discuss both the correct and incorrect
tasks during which participants spent the most time before the
realization point (the middle group in Fig. 3).

1) Correct slow start
Participants spent a long time before the realization point

on these tasks primarily due to the distraction hurdle and
because they did not always fully understand the task
instructions. In these tasks, participants did not appear to look
at the example before they created a plan based on the task
code or programming environment. Accordingly, the first time
participants have an example code focus label is not until near
the realization point. The study context may have also
contributed to the extended time before realization for some
correct slow start tasks. In order to control what programs
participants worked on for the study, we had to provide
participants with tasks and instructions, which not all

participants may have been motivated by or understood
immediately. Transcriptions for these tasks show that correct
slow start tasks had on average one instruction-description
don’t understand label in their transcripts, which was the
highest of all of the groups (see Fig. 4).

2) Incorrect slow start
Interestingly, as shown in Fig. 3, the incorrect slow start

tasks have similar times before the realization point to the
correct tasks. This means that both groups of tasks had similar
amounts of time after the realization point to complete the task,
so lack of time did not contribute to the incorrect end state. On
incorrect slow start tasks, participants had the context
distraction hurdle, but these tasks seem to have a different
pattern than those completed correctly. Task transcriptions in
this group contain the example code or example execution
labels near the beginning of the task, but participants do not
return to it again until the researcher reminds them during the
mid-task interview, possibly caused by example
comprehension hurdles.

C. No realization group

Participants working on tasks in the ‘no realization group’,
shown on the bottom right of Fig. 3, do not reach a realization
likely because they do not discuss the example code even
though they execute the example (see Fig. 4). This likely
means that they do not know how it would be useful.
Consequently, the example comprehension hurdle will be
especially important to resolve, as it can prevent participants
from even realizing what concept to use. Unexpectedly,
however, participants working on these tasks do not use the
idea generation strategy, shown by the small number of task
code: idea labels. Most likely, participants during these tasks
were overwhelmed, which is supported by the fact that both of
these tasks were first in the series of six for the two pairs of
participants.

Fig. 4 Important labels and the average count for each of the behavior groups.The largest value is shown for each label.

1.4

2.2

1.6

7.0

9.6

1.2

1

1.5

0 5 10 15 20 25

Task execution: description- don't understand

Task execution

Task code: idea

Programming environment: description- don't understand and
idea- don't know how

Programming environment: idea

Example code

Example execution

Instruction: description- don't understand

Average count of each label

L
ab

el
s

Long conclusion, correct Long conclusion, incorrect Slow start, correct Slow start, incorrect Quick, correct No realization, incorrect

D. Quick group

Participants who completed a task extremely quickly
primarily described the instructions and task and generated
ideas from the example early, rather than getting distracted.
After the realization point, transcripts from these tasks have
zero or one programming environment labels, which means
that the participants did not have many conversations or
questions about where to find code blocks. However, some
participants in the quick group did use the idea generation
strategy: “at first we tried putting them all in the do together
box and then we tried putting two out and then one out and
then put another box and put them in it.” Since these were
often simple tasks, participants could guess about different
configurations and still complete the tasks quickly.

Participants in this group also used the outline and code-
example comparison strategies. They discover the correct
concept to use almost immediately, mainly by finding it in the
example. However, participants may have also noticed these
concepts in previous tasks. In the quick group, on average, the
tasks had 1.6 example code labels and 1 example execution
label. Two of the five tasks in this group contained the code-
example comparison strategy when the participants did not
necessarily grasp the concept well enough to complete the task
directly. In the other three tasks, participants did not need more
information to correctly complete the tasks, or quickly
generated several ideas, which happened to work.

VIII. DISCUSSION

In this study, we explore how novice programmers use
examples to complete programming tasks. Specifically, we
look at the case where a novice programmer is highly
unfamiliar with their own code, as well as the example. The
combination of many new concepts can create an
overwhelming experience. Yet, this situation likely
encompasses the experiences of many end user and novice
programmers when they begin and look to examples as a way
to try to accomplish their goals.

A key result of this work is that the time spent before or
after the realization point can indicate the types of problems
participants likely experienced. In slow start tasks, participants
focus on the task and programming environment before
addressing the example. In the long conclusion group,
participants notice the key to the example early, but still
struggle to solve the task. We believe these groupings can
suggest ways to design support for novice programmers using
examples.

A. Implications of slow start behavior

When participants had slow starts, it was often because of
the example comprehension and context distraction hurdles.

Participants sometimes took a long time to reach the
realization point because they were executing the example
code more than reading the example code. The majority of the
support provided for understanding examples accompanies the
example code, but this might indicate that we should consider
ways to augment the example execution. For example, this type
of support could be more along the lines of a debugger than a
textual annotation. Furthermore, some participants did not

understand how the example related to their own code, which
prevented them from trying harder to understand it.

Since participants were new to both the programming
environment and task, spending time becoming familiar with
those aspects of the task can be valuable. Thus, we do not
always want to force novices past the context distraction
hurdle. However, especially in educational contexts, we may
want to nudge novice programmers to return to the example
once they feel comfortable with the code and environment.

B. Implications of long conclusion behavior

Interestingly, many participants had quite a bit of trouble
completing tasks even after the realization point. Our analysis
of participant behavior starts to explain why participants still
struggled after the realization point: programming
environment, code misconception and comprehension hurdles.

The programming environment hurdle is specific to visual
programming environments, where programmers may not be
able to find a code block. However, this issue it is not
necessarily specific to the first 90 minutes of programming.
Even if a novice programmer has become familiar with the
programming environment, they still might not know where to
find a code block that they have not used before. One way to
improve examples to help novices would be to augment
examples with assistance to find code blocks in the interface.

For the code misconception and code comprehension
hurdles, we may be able to help novices by encouraging more
revisiting of the example and by helping them to make a plan
from the example. While some participants revisited the
example while they were working on using the programming
concept to complete the task, this was rare, yet helpful. Instead,
many participants either used the idea generation strategy or
‘debugged into existence’, based on their misconceptions and
code comprehension hurdles [26]. The participants who tried a
few ideas and then returned to the example to see how their
code was different seemed to be more effective in generating
ideas that succeeded. However, the long conclusion pattern
likely occurs because at the realization point, participants are
not familiar enough with the task to generate a complete plan
to solve the task. This means that just augmenting an example
with a lot more information would probably cause novices to
be even more overwhelmed when they first look at it. Instead,
we would want to encourage participants to return to the
example and provide support that they can request when they
need it.

While there is more to be learned about how novices use
examples, we believe that the results of this study can inform
the design of new example support for novices.

ACKNOWLEDGMENTS

Many thanks to Julian Ozen and Evan Balzuweit for their
help! This material is based upon work supported by the
National Science Foundation under Grant No. 1054587.

REFERENCES

[1] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R.

Klemmer, “Two studies of opportunistic programming: interleaving web
foraging, learning, and writing code,” in Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, 2009, pp. 1589–1598.

[2] M. B. Rosson, J. Ballin, and H. Nash, “Everyday programming:

Challenges and opportunities for informal web development,” in Visual
Languages and Human Centric Computing, 2004 IEEE Symposium on, 2004,

pp. 123–130.

[3] “Scratch | Home | imagine, program, share.” [Online]. Available:
http://scratch.mit.edu/. [Accessed: 19-Sep-2012].

[4] “Looking Glass Community.” [Online]. Available:

https://lookingglass.wustl.edu/. [Accessed: 24-Feb-2013].
[5] C. Scaffidi, M. Shaw, and B. Myers, “Estimating the numbers of

end users and end user programmers,” in Visual Languages and Human-

Centric Computing, 2005 IEEE Symposium on, 2005, pp. 207–214.
[6] X. Zhu and H. A. Simon, “Learning mathematics from examples

and by doing,” Cogn. Instr., vol. 4, no. 3, pp. 137–166, 1987.

[7] M. B. Rosson and J. M. Carroll, “The reuse of uses in Smalltalk
programming,” ACM Trans. Comput.-Hum. Interact. TOCHI, vol. 3, no. 3,

pp. 219–253, 1996.

[8] C. Kissinger, M. Burnett, S. Stumpf, N. Subrahmaniyan, L.
Beckwith, S. Yang, and M. B. Rosson, “Supporting end-user debugging: what

do users want to know?,” in Proceedings of the working conference on

Advanced visual interfaces, 2006, pp. 135–142.
[9] A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in

end-user programming systems,” in Visual Languages and Human Centric

Computing, 2004 IEEE Symposium on, 2004, pp. 199–206.
[10] J. Cao, Y. Riche, S. Wiedenbeck, M. Burnett, and V. Grigoreanu,

“End-user mashup programming: through the design lens,” in Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, 2010, pp.
1009–1018.

[11] P. Gross and C. Kelleher, “Non-programmers identifying
functionality in unfamiliar code: strategies and barriers,” J. Vis. Lang.

Comput., vol. 21, no. 5, pp. 263–276, 2010.

[12] P. Brusilovsky and G. Weber, “Collaborative example selection in
an intelligent example-based programming environment,” in Proceedings of

the 1996 international conference on Learning sciences, 1996, pp. 357–362.

[13] L. R. Neal, “A system for example-based programming,” in ACM
SIGCHI Bulletin, 1989, vol. 20, pp. 63–68.

[14] P. Brusilovsky, “WebEx: Learning from Examples in a

Programming Course.,” in WebNet, 2001, vol. 1, pp. 124–129.
[15] G. Weber and A. Mollenberg, “ELM-PE: A Knowledge-based

Programming Environment for Learning LISP.,” 1994.

[16] D. F. Redmiles, “Reducing the variability of programmers’

performance through explained examples,” in Proceedings of the
INTERACT’93 and CHI’93 Conference on Human Factors in Computing

Systems, 1993, pp. 67–73.

[17] J. Brandt, M. Dontcheva, M. Weskamp, and S. R. Klemmer,
“Example-centric programming: integrating web search into the development

environment,” in Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, 2010, pp. 513–522.
[18] N. Sawadsky and G. C. Murphy, “Fishtail: from task context to

source code examples,” in Proceedings of the 1st Workshop on Developing

Tools as Plug-ins, 2011, pp. 48–51.
[19] J. Stylos and B. A. Myers, “Mica: A web-search tool for finding

api components and examples,” in Visual Languages and Human-Centric

Computing, 2006. VL/HCC 2006. IEEE Symposium on, 2006, pp. 195–202.
[20] M. Goldman and R. C. Miller, “Codetrail: Connecting source code

and web resources,” J. Vis. Lang. Comput., vol. 20, no. 4, pp. 223–235, 2009.

[21] D. Wightman, Z. Ye, J. Brandt, and R. Vertegaal, “Snipmatch:
using source code context to enhance snippet retrieval and parameterization,”

in Proceedings of the 25th annual acm symposium on user interface software

and technology, 2012, pp. 219–228.
[22] S. Oney and J. Brandt, “Codelets: linking interactive

documentation and example code in the editor,” in Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems, 2012, pp.
2697–2706.

[23] K. S.-P. Chang and B. A. Myers, “WebCrystal: understanding and

reusing examples in web authoring,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2012, pp. 3205–3214.

[24] P. A. Gross, M. S. Herstand, J. W. Hodges, and C. L. Kelleher, “A
code reuse interface for non-programmer middle school students,” in

Proceedings of the 15th international conference on Intelligent user

interfaces, New York, NY, USA, 2010, pp. 219–228.
[25] J. Cao, I. Kwan, R. White, S. D. Fleming, M. Burnett, and C.

Scaffidi, “From barriers to learning in the idea garden: An empirical study,” in

Visual Languages and Human-Centric Computing (VL/HCC), 2012 IEEE
Symposium on, 2012, pp. 59–66.

[26] M. B. Rosson and J. M. Carroll, “Active Programming Strategies

in Reuse,” in Proceedings of the 7th European Conference on Object-
Oriented Programming, 1993, pp. 4–20.

